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Abstract

This paper proposes an evolutionary ap-
proach to select appropriate behaviors for a
mobile robot. We augment each behavior by
adding activation/termination constraints to
accelerate the evolutionary processes. The
former constraints reduce the number of situ-
ations where each behavior is executable, and
the latter contribute to extract meaningful
behavior sequences, each of which can be re-
garded as one action regardless of its length.
We apply the genetic algorithm to obtain the
switching function to select the appropriate
behavior according to the situation. As an
example, a shooting task in a soccer game
is given to show the validity of the proposed
method. Based on the combination of the
proposed architecture and GA, we can obtain
the purposive behaviors. Simulation results
are shown, and a discussion is given.

1 Introduction

Machine learning techniques such as reinforcement
learning [8] and genetic algorithm [4] are promising
to obtain purposive behaviors for autonomous robots
in complicated environments. Many learning and evo-
lutionary techniques can obtain purposive behaviors
such as wall-following [2, 6], shooting a ball into the
goal [1], and so on. However, if the robot has no a pri-
ori knowledge to obtain the complicated behaviors, it
takes enormous time. Consequently, the resultant be-
havior seems trivial in spite of the long learning time.
That is, a direct mapping from sensory inputs to motor
commands is not tractable.

In order to obtain the feasible solution in the realis-
tic learning time, a layer architecture is often intro-
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Figure 1: A layer architecture for behavior selection

duced to cope with large scaled problems [7]. Figure
1 shows an example of layered architecture for behav-
ior selection. In this approach, the upper layer learns
the switching function to select the suitable behavior
already designed or learned. Because the designed be-
haviors can generate purposive action under the lim-
ited situations, they can help the evolutionary compu-
tation to search the feasible solutions.

In this approach, we face with the following problems:

1. how to coordinate and switch the behaviors,

2. when to select the behaviors, and

3. when to terminate the currently executing behav-
ior.

Uchibe et al. [9] applied genetic programming to solve
the above three problems in the robotic soccer domain.
However, the resultant decision tree is not represented
in a compact style. In their case, the robot selected
the collision avoidance although there were no obsta-
cles near the robot. In addition, the robot did not use
the given shooting behavior when it is suitable to be
activated. There are two major reasons why a layered
approach could not obtain the appropriate behavior
sequences: (1) GP does not take account of the pre-
condition of the given behavior explicitly, and (2) the
behavior is often switched although the goal of the be-
havior is not achieved. The first reason prevents GP
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Figure 2: A timing to select the next behavior

from reducing the learning time, and the second causes
the scraps of behavior sequence.

An example sequence of the selected behaviors is
shown in Figure 2, where the black circle indicates the
timing to change the behavior to another one. Figure
2 (a) indicates the ideal behavior sequence, whereas
Figure 2 (b) the resultant behavior sequence often ob-
tained by the learning or evolutionary approaches. In
a case (a), the robot selects the same behavior for a
while. On the other hand, in a case (b), the robot
switches the several behaviors according to the situa-
tion. Although this can be regarded as an acquisition
of the new behavior sequences instead of the given be-
havior, it causes enormous learning time because the
robot does not make good use of the behavior given
by the designer.

In order to take advantage of the behavior given by
the designer, we have to consider the the precondi-

tion and the goal of the behavior. This paper pro-
poses a behavior selection mechanism with activa-
tion/termination constraints. The former constraints
reduce the number of situations where each behavior is
executable, and the latter contribute to extract mean-
ingful behavior sequences. We call behavior with ac-
tivation/termination constraints module. These con-
straints enable the robot to modify the timing to se-
lect the next behavior as shown in Figure 2 (c), where
the gray circle indicate a vague state whether a new
behavior is changed or not. From the case (c), the ter-
mination constraint contributes to compression of the
behavior sequence. That is, it enables us to deal with
heterogeneous modules in the same manner. In this
paper, “heterogeneous” means the differences of time
to achieve the goal of the module. Once the module
is selected, actions are executed until the module ter-
minates stochastically based on the termination con-
straint. Thus, we can obtain the behavior sequence
like Figure 2 (c).

The lower layer consists of multiple modules, while the
upper layer selects the appropriate module according
to the situation. Genetic algorithm is applied to obtain
the switching function to select the appropriate mod-
ule and the timing to terminate it according to the sit-
uation. Activation/termination constraints affect not
the genetic operations such as crossover and mutation
but the individual representation. Although we uti-
lize standard genetic operations, we can obtain pur-
posive behaviors owing to the activation/termination
constraints. The results of computer simulation are
shown, and a discussion is given.

2 Behavior Selection with
Activation/Termination Constraints

2.1 Lower layer

Suppose that the robot has L modules mi (i =
1, · · · , L). A module mi consists of three components:
a behavior πi : X (state space) → U (action space), a
termination constraint Ti and an activation constraint
Ii. There are several ways to implement the behaviors,
but they must be given to the robot in advance.

The activation constraint Ii gives a set of states where
the module should be executable.

Ii(x) =
{

1 mi is executable at state x,
0 otherwise. (1)

If the designer gives the behavior π to the robot, it is
not difficult to give the precondition of the behavior.
For example, the collision avoidance behavior is im-
plemented for the mobile robot with sonars, where the



designed behavior is activated only when the obstacles
are detected by sonar.

Each module has one termination constraint Ti con-
sisting of a probability to sustain the module or not.
In other words, this function gives the time to continue
to execute the selected module.

Ti(x, t) =





0 the goal of the module
mi is achieved,

0 t > tp,i,
pi otherwise,

(2)

where t and tp,i denote the cumulative steps and the
pre-specified time interval, respectively. If the robot
continues to execute the same module tp,i times, it is
forced to stop. The robot judges whether the selected
module should be terminated or sustained with prob-
ability pi.

2.2 Upper layer

In the upper layer, the modules are switched according
to the current situation. Let the value of the module
mi at the state x be Vi(x). The robot selects the
module of which value is the highest:

i∗ = arg max
i=1,···,n

Vi(x)Ii(x). (3)

Once the module is selected, then actions are executed
according to the current behavior πi until the module
terminates stochastically based on Ti.

In order to approximate Vi(x), we use the function
expressed by

Vi(x) =
N∑

j=1

exp
(−(x− cij)T W ij(x− cij)

)
, (4)

where cij ∈ <n and W ij ∈ <n×n denote the center
position and the symmetric matrix. If W ij is positive
definite, Eq.(4) express the Gaussian function.

3 Genetic Operations

In order to obtain the appropriate pi, cij and W ij ,
we use the genetic algorithms. In GA, it is an im-
portant role to design the genetic operations such as
crossover and mutation. A procedure to generate the
new offspring is indicated in Figure 3.

Suppose that the robot has L modules, and each mod-
ule has N parameters (pi, cij , W ij). Figure 4 (a)
shows the chromosome of individual. We perform two
types of crossover.
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Figure 3: Flowchart of GA

Global crossover : Figure 4 (b) shows a basic idea of
global crossover. For each module mi, a pair of param-
eters is selected randomly from each parent. Then, we
swap two parameters.

Local crossover : At the beginning, we find the pa-
rameters of which distance is minimum.

(j∗, k∗) = min
j,k=1,···N

||c1
ij − c2

ik||.

1. In case of W ij , we perform two point crossover.

2. In case of pi and cij , we utilize BLX-α [3] based
on real-coded GA. Figure 4 (c) shows a basic
idea of BLX-α in a case of two dimensional vec-
tor. The BLX-α uniformly picks parameter values
from points that lie on an interval that extends αI
on either side of the interval I between parents.
In other words, it randomly generates two chil-
dren around their two parents by using uniform
distribution in the hyper rectangular region whose
sides are parallel to axes of the coordinate system.

Mutation : One of the elements of cij or W ij is
replaced to a new random value.

Genetic operations used here does not take account of
activation/termination constraints explicitly. In other
words, activation/termination constraints do not help
GA to search the feasible solutions directly.

4 Task and Assumptions

4.1 Robot and Environment

We have selected a simplified soccer game as a test-
bed. The task for the learner is to shoot a ball into
the opponent goal. The environment consists of a ball
and two goals, and a wall is placed around the field
except the goals. The sizes of the ball, the goals and
the field are the same as those of the middle-size real
robot league of RoboCup Initiative [5] that many AI
and robotics researchers have been involved in.
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Figure 4: Crossover

Figure 5 shows the real robot used for modeling. The
robot moves around the field based on the power
wheeled steering system. As motor commands, our
mobile robot has two degrees of freedom. The input u
is defined as a two dimensional vector:

uT =
[

ul ur

]
ul, ur ∈ {−1, 1},

where ul and ur are the velocities of the left and right
wheels, respectively. In addition, the robot has a kick-
ing device to kick the ball.

The robot has two vision systems; one is a normal vi-
sion system to capture the front view, and the other
is an omni-directional one to capture the visual infor-
mation whole around the robot. The omni-directional
vision has a good feature of higher resolution in direc-
tion from the robot to the object although the distance
resolution is poor.

The robot observes the center positions of the ball and
two goals in the image plane using two vision systems.
Therefore, the number of image features is 12. A sim-
ple color image processing is applied to detect the ball
and the goal area in the image plane in real-time (ev-
ery 33 [msec]). Figure 6 (b) shows detected image
features to extract the information of the environment
based on the omni-directional vision, where xb, xown

and xopp are the center position of the ball, the own
goal, and the opponent goal, respectively.

omni-directional
vision

normal vision

Figure 5: Our mobile robot
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Figure 6: The experimental setting.

4.2 Module Design

4.2.1 Basic Modules

We prepare five basic modules of which behavior just
generates a simple action regardless of sensory infor-
mation. That is, the motor command generated by
each basic module is described as follows:

• m1 : go forward
uT = [1.0, 1.0]

• m2 : go backward
uT = [−1.0, −1.0]

• m3 : stop
uT = [0.0, 0.0]

• m4 : turn left
uT = [−1.0, 1.0]

• m5 : turn right
uT = [1.0, −1.0]

These modules are always executable, in other words,
for all x we set Ii(x) = 1 (i = 1, · · · , 5). Since they
have no explicit purpose to achieve, the termination
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Figure 7: Typical behaviors generated by the reactive
modules

constraints only depends on the steps. In this experi-
ment, we set the termination parameters in Eq.(2) as
p = 0.4 and tp = 150 steps (= 5 [sec]).

4.2.2 Reactive Modules

Figure 7 shows typical behaviors generated by the four
prepared modules. In order to realize the defending
behavior, we design the following four reactive mod-
ules.

• m6 : search the ball
The purpose of this module is to capture the ball
image using the normal vision. Therefore, the
robot searches the ball by turning to left or right.
T6 is set to zero when the ball is observed.

• m7 : avoid collisions
The purpose of this module is to avoid colli-
sions with the wall. If the wall is not detected,
uT = [1.0, 1.0]. This module is activated when
the robot moves around near the wall.

• m8 : kick the ball
In case the ball is in front of the robot and this
module is selected, the robot succeeds in kicking
the ball. Of course, this module has no effects
when the ball is not in front of the robot. This
module is activated when the ball image is cap-
tured by the normal camera.

• m9 : shoot the ball
The purpose of this module is to push the ball
into the opponent goal. This module is activated
when both the ball and the opponent goal images
are captured by the normal camera. The resul-
tant behavior is the same as that of m1, that is,
uT = [1.0, 1.0]. This module does not always suc-
ceed in shooting behaviors, especially when the
ball position is shifted from the goal direction.

In this experiment, we set the termination parameters
in Eq.(2) as p = 0.8 and tp = 150 for the above four
modules.

own
goal

opponent
goal

(a) m10 (b) m11

Figure 8: Typical behaviors generated by the complex
modules

4.2.3 Complex Modules

We prepare a controller which makes the features on
the image plane converge to the desired values. For
the desired state xd = [xd yd]T , a motor command u
is computed by

u =
[

ur

ul

]
= K

[ −1 1
1 1

] [
xd

yd

]
, (5)

where ur and ul are the velocity of the right and left
wheels, respectively. K is a gain matrix. Using the
controller based on Eq. (5), we prepare the following
two modules.

• m10 : move to the defensive position
The purpose of this module is to move to the place
between the ball and the own goal. The desired
state xd is given by

xd = (1− a)xb + axown.

• m11 : move to the offensive position
The purpose of this module is to move to the op-
posite side of the opponent goal to shoot. The
desired state xd is given by

xd = (b + 1)xb − bxopp (0 ≤ b ≤ 1).

These two modules can be executed when the desired
state is not achieved, that is,

Ii =
{

1 ||x− xd|| ≤ ε
0 otherwise ,

where ε and ||x|| denote the norm of x, and the small
threshold, respectively. In this experiment, we set the
termination parameters in Eq.(2) as p = 0.8 and tp =
150 for the above two modules.

4.3 GA Settings

The population size is 50, and we perform 30 trials to
evaluate each individual. At the beginning of the trial,



the robot and the ball are placed at the dark and light
gray areas, respectively shown in Figure 6 (a). One
trial is terminated if the robot shoots a ball into the
goal or the pre-specified time interval expires. In or-
der to select parents for crossover, we use tournament
selection with size 10.

One of the most important issues is to design the fit-
ness measures. In this experiment, we set up four fit-
ness measures as follows:

• f1 : the total number of obtained goals,

• f2 : the total number of lost goals,

• f3 : the total number of steps until all trials end

• f4 : the total number of ball-kicking,

In order to cope with multiple fitness measures, one
simple realization is to create the new scalar function
based on the weighted summation of multiple fitness
measures by

fc =
n∑

i=1

wifi, (6)

where wi denotes the weight for i-th evaluation. The
problem is to design the value of wi since we must
consider the tradeoff among all the fitness measures.
In this experiment, we use the adaptive fitness func-
tion [10] to decide the weights. Based on this method,
the weights are modified considering the relationships
among the changes of the four evaluations through the
evolution process.

5 Experimental Results

In order to show the validity of the proposed method,
we perform the following four experiments; (1) without
activation/termination constraints, (2) with termina-
tion constraints, (3) with activation/termination con-
straints, and (4) proposed method. In cases of (2) and
(3), a probability pi for each module is fixed. Figure
9 shows the averaged scores during the evolutionary
processes. Since we perform 30 trials to evaluate one
individual, the maximum value of the averaged score
is 30.

5.1 Simulation Results

Without activation/termination constraints

Since the robot selects the new module in real time
(every 33 [msec]), the robot changed the module fre-
quently, especially from six to ten seconds. Figure 9
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Figure 9: Average of scores

shows that this approach did not fulfill the goal of
shooting behavior.

Figure 10 (a) shows the transition of the selected mod-
ules. At the beginning, the robot selected the avoiding
module m7 although the robot is not located near the
wall. In this case, the robot utilized m7 to approach
the ball since this module generated the backward ac-
tion when the ball is not observed. Then, the two
modules m11 and m4 are selected frequently from six
to ten seconds. As a result, the robot failed to shoot
the ball into the goal until the pre-specified time in-
terval expired.

With termination constraints

This approach caused the successful shooting behav-
ior, and took shorter learning time than the case of
no constraints described in the previous section. How-
ever, this approach took longer time to evolve than the
case with both constraints. Figure 10 (b) shows the
transition of the selected modules. In this experiment,
m1 was selected to shoot the ball into the goal instead
of m9.

With activation/termination constraints

Figure 10 (c) shows the transition of the selected mod-
ule. Until six seconds, the robot used three modules
m4, m10, and m11 to go back to the offensive position.
In this situation, the pre-defined behavior π11 can not
succeed in moving to the offensive position since this
behavior is implemented by a local linear feedback con-
troller. After the robot moved to the front of the ball,
the robot succeeded in shooting the ball into the goal.
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Figure 10: Sequences of the selected modules
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Figure 11: Example behavior sequences based on the
proposed method

Proposed method

Figure 9 shows that this approach took the shortest
learning time to obtain the shooting behavior, and got
best scores. In a case of this method, the basic module,
for example, m5 (turn right) was terminated quickly.
One of the successful behaviors based on the proposed
method is shown in Figure 11, where the numbers in
the figure represents the elapsed time.

The learning processes of the case (c) and (d) are al-
most same shown in Figure 9. In this experiment, the
probability pi did not converged because the optimal
probability depends on the switching function.

5.2 Real Experiments

We show a result to demonstrate how the proposed
method works. We transfer the result of computer
simulation to the real robot. A simple color image
processor (Hitachi IP5000) is applied to detect the ball
and the goal area in the image in real-time (33 [msec]).

Figure 12 shows an example sequence of obtained be-
havior in the real environment. Because of the low
image resolution of the omni-directional vision system,
the robot sometimes failed to detect the objects at a
long distance. In this case, the module could not be
performed appropriately. In spite of those troubles,
our robot could accomplish the given task.
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6 Discussion and Future Works

This paper presented a architecture for behavior selec-
tion with activation/termination constraints. We ap-
plied the proposed method to a soccer situation, and
demonstrated the experiments on a simulated robot.

In the current version of our method, the genetic op-
erations are applied only to learning the upper layer,
that is, c and W . One interesting extension is to learn
the appropriate termination constraints since it should
be better to set the appropriate T according to the sit-
uation.

As future work, we will apply the proposed method
to co-evolution for cooperative behavior acquisition in
the context of RoboCup.
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