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Abstract

Imitation Learning is not simply one of the most
promising ways to accelerate the behavior acquisition
for humanoid robots but also one of the most inter-
esting cognitive issues to model how we human be-
ings learn to acquire various kinds of behaviors. How-
ever, the existing robotic approaches have focused on
the behavior generation assuming the observation of
the internal model of the demonstrator, but have not
paid any attention how to build such a model from
the learner’s perception. This paper presents a compu-
tational model of view-based imitation learning with-
out any internal model of the demonstrator. In-
stead, based on opt-geometric constraint (stereo epipo-
lar constraint), the robot learns to imitate the demon-
strator’s motion by applying adaptive visual servo-
ing that minimizes the residual between the recovered
demonstrator’s body parts supposed to be viewed by the
demonstrator and the learner’s ones in the learner’s
stereo image planes, and then reproducing the recov-
ered demonstrator’s trajectories without any recon-
struction of 3-D trajectories. Computer simulation
and real experiment are shown and discussion is given.

1 Introduction

Imitation Learning is one of the most promising
ways to accelerate the behavior acquisition for hu-
manoid robots [1]. Because, machine learning theories
seems difficult to directly apply to real robot tasks as
they are due to the huge search space caused by multi-
modal sensor space and many DOFs which also add
much more uncertainties than computer simulations.

Another aspect of the imitation learning is that it
is also one of the most interesting cognitive issues to

model how we human beings learn to acquire various
kinds of behaviors by building real robots capable of
imitation learning [2]. However, the existing robotic
approaches have focused on the behavior generation
assuming the observation of the internal model of the
demonstrator given the 3-D geometrical parameters
(ex. [3, 4, 5]) or the coordinate transformation from
the demonstrator’s to the learner’s (ex. [6, 7]). Hence,
they have not paid any attention how to build such an
internal model from the learner’s perception from a
viewpoint of the internal observer.

This paper presents a computational model of view-
based imitation learning without any internal model of
the demonstrator. Instead, based on an opt-geometric
constraint (stereo epipolar constraint [8]), the robot
learns to imitate the demonstrator’s motion. Unlike
the previous work [9], we do not need the initial pos-
ture assumption that the demonstrator’s initial pos-
ture is the same as the learner’s to estimate the epipo-
lar constraint. Adaptive visual servoing (hereafter,
AVS) [10] resolves this limitation by minimizing the
residual between the recovered demonstrator’s body
parts supposed to be viewed by the demonstrator and
the learner’s one on the learner’s stereo image plane,
and then reproducing the recovered demonstrator’s
trajectories without any reconstruction of 3-D trajec-
tories.

The rest of the paper is organized as follows.
First, the principle of the demonstrator’s view recov-
ery based on the stereo epipolar constraint is given.
Next, conflict resolution with stereo geometry is intro-
duced to estimate the epipolar constraint. Then, the
experimental results by computer simulation and real
experiment are shown. Finally, discussion is given.
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Figure 1: Epipolar geometry

2 Demonstrator’s view recovery based
on epipolar geometry

2.1 Epipolar geometry

Fig.1 shows an epipolar constraint between a pair
of stereo images [p] and [q]. Given a point pmi in the
left (right) image [p] ([q]), its corresponding point qmi

(pmi) in the right (left) image[q] ([p]) is constrained
to lie on a line called epipolar line. This relationship
(constraint) between two cameras is called epipolar
geometry.

If these two cameras can be approximated by affine
camera model [11], epipolar geometry is given by

pquT
i

pqf + pqf33 = 0, (1)

where pqui = [pmi,
qmi]T is a vector which consists of

the i-th matched image point between [p] and [q], and
pqf = [pqf13,

pqf23,
pqf31,

pqf32]T consists of nonzero el-
ements in the affine fundamental matrix for the epipo-
lar geometry between [p] and [q].

2.2 Estimation of affine fundamental ma-
trix [11]

In general, a minimum of 4 pairs of matched points
are required to uniquely determine the affine funda-
mental matrix. It can be determined by minimizing
the sum of distances of each point pqui to the hyper-
plane (eq.1) in the 4-dimensional space.

By this method, the affine fundamental matrix pqf
is determined as an eigenvector associated with the
minimal eigenvalue of pqW , where

pqW =
N∑

i=1

(pqui − 1
n

N∑

j=1

pquj)(pqui − 1
n

N∑

j=1

pquj)T , (2)

then,

pqf33 = −pquT
0

pqf . (3)
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Figure 2: An Overview of the method to find a cor-
responding point in an added view [L] ([R]) from the
two views [l] and [r].

2.3 Finding a corresponding point in a
different view

We add one more camera [L] ([R]) observing a point
which is also observed in [l] and [r]. The problem is
how to find the corresponding points in the view [L]
([R]) with ones in the views [l] and [r].

Based on epipolar constraints, the matched points
lmi (rmi) are constrained to lie on the epipolar lines on
[L] ([R]). We can find the matched points Lmi (Rmi)
on the cross sections of epipolar lines (see Fig.2). And
Lmi and Rmi must also satisfy epipolar constraint be-
tween [L] and [R].

Thus, there are five epipolar equations ([l,L], [r,L],
[l,R], [r,R], and [L,R]) to be satisfied. Developing their
formulations algebraically, we obtain

ALRui = −Bci, (4)

where

A =




lLf31
lLf32 0 0

rLf31
rLf32 0 0

0 0 lRf31
lRf32

0 0 rRf31
rRf32

LRf31
LRf32

LRf13
LRf23




B =




lLf13
lLf23

lLf33 0 0 0
0 0 0 rLf13

rLf23
rLf33

lRf13
lRf23

lRf33 0 0 0
0 0 0 rRf13

rRf23
rRf33

0 0 0 0 0 LRf33




ci = [ lxi
lyi 1 rxi

ryi 1 ]T

If AT A is nonsingular, LRui is determined from the
matched points of the other two stereo images, such
as,

LRui = (ATA)−1ATBci. (5)
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Figure 3: The learner’s view at observing ([l], [r])
and imitating ([L], [R]), and the demonstrator’s view
([LD], [RD]) at watching itself.

2.4 Demonstrator’s view recovery

Hereafter, we assume that the learner and the
demonstrator have the same body structure, that is,
the same link structure and the same camera parame-
ters. Then, the demonstrator’s stereo views ([LD] and
[RD]) watching its self motion can be regarded as the
learner’s ones ([L] and [R]) watching its self motion if
the learner succeeds in exactly imitating the demon-
strator’s motion. If we can recover the demonstra-
tor’s view, it means the learner’s view to be realized.
Then, the problem is how to recover the views ([LD]
and [RD]) as the views ([L] and [R]) based on epipolar
geometry (see Fig.3).

We can determine all affine fundamental matrices
between [l],[r],[L] and [R] by assuming that initial pos-
tures of both the demonstrator and the learner are the
same and the corresponding points on the body parts
are given. Using these affine matrices, we can recover
the demonstrator’s view which shows the desired tra-
jectories for the learner to realize based on the method
described in 2.3. Then, we can apply the adaptive vi-
sual servoing method to imitate the demonstrator’s
motion [9].

3 Resolving Conflict with Epipolar
Geometry

In order to recover the demonstrator’s view based
on the method described in the previous section, we
need the true affine fundamental matrices between the
views of observing the demonstration ([l] and [r]) and
observing the learner itself ([L] and [R]). However, we
cannot estimate the true fundamental matrix when
the learner’s posture is different from the demonstra-
tor’s one.

If the affine fundamental matrices are correctly
estimated, the recovered points of the demonstra-
tor’s body parts are coincident with the corresponding
learner’s body parts. Else, the corresponding points
are shifted from each other on the image plane. That
is, the estimated affine fundamental matrix has a con-
flict with true epipolar geometry. In this section, we
derive the evaluation function of this conflict, analyze
its behavior, and resolve the conflict by minimizing
the evaluation function.

3.1 Evaluation function

Let the evaluation function of the error caused by
the estimated affine fundamental matrix be

E =
1

2N

N∑

i=1

(LeT
i

Lei + ReT
i

Rei), (6)

where jei(j = L,R) denotes a vector from a recovered
point(jm̂i) to its corresponding one(jmi) (see Fig.4).
Note that this evaluation function consists of only the
visual information of both observing the demonstra-
tion and monitoring the learner itself.

Since the projected points LRui of the learner’s
body parts are the functions in terms of the learner’s
posture (θ ∈ <m), they can be given as, LRui =
LRui(θ). Supposing that the learner’s posture is given
by θ = θD+δθ, where θD is the posture of the demon-
strator, the projected point LRui is given by the fol-
lowing equation including the perturbation LRδui,

LRui = LRuDi + LRδui, (7)

where LRuDi = LRui(θD) = [LmDi,
RmDi]T .

As long as LRδui is small, the relationship between
θ and LRui can be approximated by

LRδui = Juiδθ, (8)

where Jui = ∂LRui/∂θT ∈ <4×m is a Jacobian matrix
of time-derivatives of the projected point vector with
respect to the joint angle.

Based on the perturbation theory for eigenvalue,
the estimated fundamental matrix pqf is given by the
following equation including a function of perturba-
tion pqδf in terms of LRδui(i = 1, · · · , n),

pqf = pqf true + pqδf(LRδu1, · · · , LRδuN ), (9)

where pqf true is the true fundamental matrix. From
eq.(8), the second term of RHS in eq.(9) is given by
a function in terms of δθ, such as pqg(δθ). Therefore
pqf is approximated by including it,

pqf = pqf true + pqg(δθ) (10)
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Figure 4: evaluation function

Substituting eq.(10) to eq.(5), and developing the
above formulation algebraically in focusing on the
dominant term, we obtain

E = δθT Qδθ, (11)

where Q ∈ <m×m is a positive-semidefinite matrix.
The positive-semidefinite matrix Q can be regarded

as a positive-definite matrix because the evaluation
function usually becomes zero only when the learner’s
posture corresponds to the demonstrator’s one. Thus,
the proposed evaluation function is expected to be a
convex function and have a local minimum at which
the learner’s posture corresponds to the demonstra-
tor’s one.

4 Minimizing the evaluation function

Since it can be seen as a convex function in terms of
joint angles, it is expected to be able to minimize the
proposed evaluation function by a gradient method.
In order to use the gradient method, we need the gra-
dient vector, which is unknown in our case. Then,
adaptive visual servoing method (AVS) [10] is applied
to estimate the gradient vector of the unknown sys-
tem.

The relationship between the learner’s joint angle
θ and the evaluation function E is given by E = E(θ)
from eq.(11). Differentiating it, we obtain a velocity
relation,

Ė = JE θ̇, (12)

where JE is a Jacobian matrix of time-derivatives of
the evaluation function with respect to joint angle ve-
locity. Using AVS, the Jacobian matrix ĴE can be es-
timated based on the recursive weighted least square
method.

In order to minimize E, we can determine the con-
trol input vector uinput ∈ <m in the following equa-
tion,

uinput = −KĴEE (13)
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Figure 5: Assuming the learner and the demonstrator
as two identical manipulator.

where K ∈ <m×m is a positive-definite gain matrix.

5 Experiments

To show the validity of the proposed method, some
experimental results are given in this section. Two
identical manipulators are assumed as bodies of the
learner and the demonstrator, respectively. A pair of
stereo cameras are assumed as learner’s view points
(see Fig.5).

5.1 Behaviors of the evaluation function
by computer simulation

To examine the behavior of the evaluation func-
tion, the computer simulation is performed. When the
demonstrator’s joint angle are (θ2, θ4) = (45◦,−90◦),
the learner observes the demonstrator’s posture and
know the position of the ten feature points on the
demonstrator’s body in its stereo views. Then the
learner changes the gaze direction and watchs its
own matched feature points. Fig.7 shows the calcu-
lated evaluation function when moving its joint angles,
θ2 = 0◦ ∼ 90◦, andθ4 = 0◦ ∼ −180◦.

We can regard that the calculated evaluation func-
tion is almost a convex function which has a local min-
imum at (θ2, θ4) = (41◦,−90◦). The local minimum
is very close to the point which the learner’s posture
corresponds to demonstrator’s one.

5.2 Behaviors of the evaluation function
in real experiment

To examine the behavior of the evaluation func-
tion, the result in the real experiment is shown in this
section. In this experiment, the right and left ma-
nipulators are assumed as the learner’s body and the
demonstrator’s one, respectively (see Fig.6). And the
learner’s view is a pair of center stereo cameras of
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Figure 6: Overview of the experimental setup
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(b) Close up

Figure 7: Evaluation function in the computer simu-
lation; global view (left) and close up (right) of the
evaluation function.

which image size and the baseline are 640 × 240 and
60cm, respectively. Fig.8 shows the calculated evalu-
ation function in the same manner as in the computer
simulation. In the real experiment, the the learner
moves its joint angles, θ2 = 25◦, 35◦, 45◦, 55◦, 65◦ and
75◦, and θ4 = −25◦ ∼ −135◦.

Similar to the computer simulation, the calculated
evaluation function can be regarded as a convex one
which has a local minimum at (θ2, θ4) = (45◦,−86◦).

From the results of the computer simulation and the
real experiment, we may conclude that the proposed
evaluation function is a convex one and has a local
minimum at which the learner’s posture corresponds
to the demonstrator’s one.

5.3 Posture imitation by resolving con-
flict

To show the validity of the method to resolve the
conflict of the estimated affine fundamental matrix
with epipolar geometry, the result of the real exper-
iment is shown in this section. Adaptive visual ser-
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Figure 8: Evaluation function in the real experiment;
global view (left) and close up (right) of the evaluation
function.

voiung (hereafter, AVS) is applied as one of a gra-
dient method to estimate the true epipolar geometry
and then to realize the imitation. The control input
is determined by eq.(13). The initial values of the Ja-
cobian matrix to be estimated are arbitrarily chosen
as

Ĵeval = [−1.0 1.0 ] , (14)

and forgetting factor ρ and the positive-definite gain
matrix K are 0.95, and diag(0.5 × 10−2, 0.5 × 10−2),
respectively.

After observing ten feature points on the demon-
strator’s body, the learner minimizes the evaluation
function by using AVS. Fig.9 (a) shows the trajectories
of two joint angles θ2 and θ4, respectively, during the
control. They are evidently converged to the demon-
strator’s posture (broken lines). Fig.9 (b) shows that
the evaluation function also converges to zero by the
method.

5.4 Trajectory imitation based on esti-
mated epipolar geometry

To show the correctness of estimated affine funda-
mental matrix through minimization process in the
real experiment, the learner imitates the demonstra-
tion using it. The learner stores the trajectory of the
demonstrator’s endeffector. Then, it recovers the ob-
served trajectory on its view of monitoring the self
motion using the method described in 2.4, and the
learner imitates by reproducing the recovered trajec-
tory based on feedback control using AVS.

Fig.10 shows the images of the learner’s view during
the imitation. Each figure contains two trajectories;
one is learner’s and the other is the true one. Since two
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Figure 10: The trajectories of imitated motion (solid
lines) and those (broken lines) of desired in the
learner’s view obtained by the same control input as
the demonstrator.

trajectories are almost overlapped with each other, it
can be regarded that the estimation of affine epipolar
geometry is sufficient to imitate the demonstrator’s
motion.

6 Discussion and conclusion

In this paper, we proposed a computational model
of view-based imitation learning without assuming
that the initial postures of the demonstrator and the
learner are the same. The evaluation function is
defined to estimate the difference between the true
epipolar geometry and the estimated one caused by
the different initial postures. Adaptive visual servoing
takes roles of minimization of this error and of real-
izing the imitation as well. The experimental results
showed the validity of the method.

The current motion representation is the trajectory
on the image plane, and no more abstraction in this
level. To cope with environmental changes and/or
task variations, more abstracted motion representa-
tion capable to generate various kind of behaviors
combining the primitive motions should be developed
through the imitation process based on the leraner’s
perception. This is our future work.
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