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Abstract

Imitation Learning is not simply one of the most
promising ways to accelerate the behavior acquisition
for humanoid robots but also one of the most inter-
esting cognitive issues to model how we human beings
learn to acquire various kinds of behaviors. As the
first step towards developmental approach to spatial
perception for imitation learning, this paper proposes
a method of incremental recovery of the demonstra-
tor’s view using a modular neural network by which the
learner can organize spatial perception for the view-
based imitation learning with the demonstrator in dif-
ferent positions and orientations.

1 Introduction

Imitation learning is one of the most promising
ways to accelerate the behavior acquisition for many
DOF robots [1]. Because, machine learning theories
seems difficult to directory apply to real robot tasks
as they are due to the huge search space caused by
multi-modal sensor space and many DOF's which also
add much more uncertainties than computer simula-
tions. Another aspect of the research on imitation
learning is that it is also one of the most interesting
cognitive issues to model how we human beings learn
to acquire various kinds of behaviors by building real
robots capable of imitation learning [2].

Since existing robotic approaches have focused on
behavior generation and memorization, they assumed
the powerful observation capabilities. These robots
can estimate the internal state of the demonstrator
given the 3-D geometrical parameters (ex. [3, 4, 5])
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or the coordinate transformation from the demonstra-
tor’s to the learner’s (ex. [6, 7]). However, such as-
sumptions do not seem applicable to the case of imita-
tion learning by human. Therefore, the robot should
learn behaviors by using its on-board sensors from a
viewpoint of cognitive approaches.

Asada et al. proposed the method of the view-based
approach to imitation learning without assuming the
observation of the demonstrator’s internal state [8]. In
their approach, the learner can recover the demonstra-
tor’s view based on opt-geometric constraint (stereo
epipolar geometry [9]), assuming that the demonstra-
tor has the same body structure as the learner’s. By
realizing the same trajectories of demonstration in the
recovered view, the learner can estimate the internal
state of demonstrator.

Since the parameters of their system depend on its
viewpoint (body orientation of the demonstrator to it-
self), the learner needs to recover the demonstrator’s
view from the beginning if the body orientation of the
demonstrator changes. From a viewpoint of the cog-
nitive approach, the learner is expected to cope with
the change of the body orientation of the demonstra-
tor. In other words, it is a very interesting issue how
the learner develops its spatial perception for imitation
from the visio-motor map learning, and the capabil-
ity of internal state estimation for the demonstrator.
Then, we propose a method of incremental recovery
of the demonstrator’s view using modular neural net-
work by which the learner can organize spatial per-
ception for the view-based imitation learning with the
demonstrator in different positions and orientations.

The rest of the paper is organized as follow: first,
the previous work of demonstrator’s view recovery
based on epipoalr geometry is revisited partially be-
cause of explaining the background of the problem and
partially because of showing the existence of the solu-



tion. Next, the proposed method is given with a mod-
ular network architecture. Then, the experimented re-
sults are shown and finally discussion and future work
are given.

2 Previous work [8] : Demonstrator’s
view recovery based on epipolar ge-
ometry

2.1 Epipolar geometry

Fig.1 shows an epipolar constraint between a pair
of stereo images [p] and [q]. Given a point Pm,; (%m;)
in the left (right) image [p] ([g]), its corresponding
point %m; (Pm;) in the right (left) image[q] ([p]) is
constrained to lie on a line called epipolar line. This
relationship (constraint) between two cameras is called
epipolar geometry.

If these two cameras can be approximated by affine
camera model [10], epipolar geometry is given by

Pl PIf 4 Plfas = 0, (1)
where Pau; = [Pm;, %m;]T is a vector consists of the
i-th matched image point between [p] and [g], and
PUf = [Pfig, Plfoq, Pifsy, Plfso]T consists of nonzero el-
ements in the affine fundamental matrix for the epipo-
lar geometry between [p] and [q].

attentional point
b

Pm,
/

an epipolar line

Figure 1: epipolar geometry

2.2 Estimation of affine fundamental ma-
trix [10]

In general, a minimum of 4 pairs of matched points
are required to uniquely determine the affine funda-
mental matrix. It can be determined by minimizing
the sum of distances of each point P%u; to the hyper-
plane (eq.1) in the 4-dimensional space.

By this method, the affine fundamental matrix Pif
is determined as an eigenvector associated with the
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minimal eigenvalue of PIW | where

N | N 1N
P = (s — 3y = > M), (2)
i=1 j=1 j=1
then,
Pifag = —PugPIf. (3)

2.3 Finding a corresponding point in a
different view
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Figure 2: Overview of the method to find a corre-
sponding point in an added view [L] ([R]) from the
two views [1] and [r].

We add one more camera [L] ([R]) observing a point
which is also observed in [l] and [r]. The problem is
how to find the corresponding points in the view [L]
([R]) with ones in the views [1] and [r].

Based on epipolar constraints, the matched points
'm; ("my;) are constrained to lie on the epipolar lines on
[L] ([R]). We can find the matched points “m; (fm;)
on the cross sections of epipolar lines (see Fig.2).

Thus, there are four epipolar equations ([,L], [r,L],
[LR], and [r,R]) to be satisfied. Expanding their for-
mulations algebraically, we obtain

ALR’U,Z‘ = —BCZ', (4)
where
lif:n lif32 0 0
T s 0 O
APy,
0 0 "By "Rfy
Ifig Lfyg Lfag 0 0 0
B_ 0 0 0 "Efig hfay Thfsg

IBf1g WBfog Bfss 0 0 0
0 0 0 "Bfiy rBfys rRf

=l Yy 1wy 1"

X

If AT A is nonsingular, L%, is determined from the
matched points of the other two stereo images, such



as,
LRy, = (ATA)~'AT Be;. (5)

Following this equation, projected points on [l] and [r]
are transformed onto [L] and [R]. Hereafter we call this
mechanism as view transformation mechanism, which
finds corresponding points on a certain stereo images
to projected points on different ones.

Views observing
demonstration

demonstrator learner
ERN, NSl -
I[ RQ] = mapping based on
epipolar geometry

(Rl

I
|
I
I
!
Views watching

I Views watching
itsown motion |

its own motion

Figure 3: The learner’s view when observing ([!], [r])
and imitating ([L], [R]), and the demonstrator’s view
([ILp], [Rp]) when watching itself.

2.4 Demonstrator’s view recovery

Hereafter, we assume that the learner and the
demonstrator have the same body structure, that is,
the same link structure and the same camera parame-
ters. Then, the demonstrator’s stereo views ([Lp] and
[Rp]) watching its self motion can be regarded as the
learner’s ones ([L] and [R]) watching its self motion
if the learner succeed in exactly imitating the demon-
strator’s motion. If we can recover the demonstra-
tor’s view, it means the learner’s view to be realized.
Then, the problem is how to recover the views ([Lp]
and [Rp]) as the views ([L] and [R]) based on epipolar
geometry (see Fig.3).

We can determine all affine fundamental matrices
between [1],[r],[L] and [R] by assuming that initial pos-
tures of both the demonstrator and the learner are the
same and the corresponding points on the body parts
are given. Using these affine matrices, we can recover
the demonstrator’s view which shows the desired tra-
jectories for the learner to realize based on the method
described in 2.3. Then, we can apply adaptive visual
servoing method to imitate the demonstrator’s motion
8]
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3 View transformation mechanism by
modular architecture

In the previous work [8], the learner must re-
estimate the parameters of view transformation mech-
anism everytime its viewpoint to the demonstrator
changes. In order to cope with this problem, we pro-
pose a view transformation mechanism by modular
architecture. It consists of a number of modules of
view transformation and integrates the outputs from
these modules.

The merits of modular architecture are:

e by assigning different module for the view trans-
formation in different learner’s viewpoint, it can
store view transformation mechanisms, and

e by integrating a number of modules cooperatively,
it can realize the view transformation for unexpe-
rienced viewpoints.

Although there are many possible modular structures
for view transformation mechanism, we apply the liner
network here for simplicity (see Fig.4). In order to
realize the modular learning system, we must define

e how each module computes its output and learns
to converge it to the desired value,

e how to integrate the outputs of the modules, and

e how to assign the responsibilities of learning to
each module.

Figure 4: The modular architecture which integrates
the outputs of modules by the liner sum.

3.1 The structure of the individual mod-
ule

It is a straightforward way to apply the view trans-
formation mechanism based on epipolar geometry (eq.
(5)) to the structure of the module in the modular ar-
chitecture. However, in the consideration of the com-
patibility with the following algorithm of the incre-
mental learning, we substitute matrix operation in eq.



(5) with a neural network. In order to let it converge
to the desired value based on epipolar geometry, the
structure should reflect the formulation described in
2.3.

Thus, the matrix operation in eq. (5) can be substi-
tuted with almost full connection feedforward neural
network in which the unit function is liner and some
connection are cut since the parameter matrix B in
equation (5) contains zero elements (see Fig.5). In-
stead of the top-down architecture with the full knowl-
edge of the matrix B, we use a sigmoidal function by
which we expect the generalization capability.

(AW AT (-B) O

Figure 5: The structure of view transformation mod-
ule

3.2 Integration of the outputs in the mod-
ular architecture

Suppose that the learner observes m feature points
on the demonstrator’s body in the views ([I] and [r]),
and it also observes m corresponding feature points on
the learner’s one in the views ([L] and [R]). Let the
feature vector of the i-th feature point in the views [{]
and [r] be "u; = ['mI,"mI |7 where 'm; = ["x;, y;]T
is an image coordinates of the i-th feature point in
the view [v]. Further, let the feature vector of the i-
th feature point in the views [L] and [R] be “fu,; =
[fm, fm T

In our modular structure, each module receives the
feature vector as an input and then outputs a vector.
The transformation of j-th module can be described
as a function g; € 4. Thus, when the i-th feature
vector "u; is input, the output of the j-th module
(j =1,---,m) is g;(*"u;). The network integrates
the output by liner sum of each module’s output. The
transformation of the network can also be described
as a auction g. When the i-th feature vector "u; is
input, the network output can be described as

g(""u;) = ijgj(lrui)' (6)

Since the purpose of this network is to realize the
view transformation mechanism, all n network outputs
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g(""u;),i = 1,---n should correspond to the learner’s

feature vector “fw;. Therefore, the average of the
squared transforming errors about all feature points,

I, 4
E= n Z \g(l u;) — LRUi|2 (7)
i=1

should be minimized.

To minimize F, it is a possible way to let the out-
put of better module which has less transforming error
(¢j = |g;("u;) — “%u;]?) contribute to network output
more. It can be realized by making the weight w; in
the eq. (6) be a soft-max function of the module’s
transforming error,

B exp(e; /02)
= T coplen/o?)’ ®)

where o is a scalar parameter which determines the
degree of evaluation of the transforming error.

wj

3.3 Learning in the modular architecture

Competitive learning seems a promising way to let
the network learn the view transformation mechanism
incrementally. It can be realized by controlling the
learning rates of modules. That is, better modules
assigned more learning weight learn more while worse
modules less, and then, the better ones will be a expert
of the view transformation mechanism in a certain sit-
uation. In a different situation, a different module
would be a expert. Thus, competitive learning is real-
ized.

Such competitive learning is implemented by using
a weight in eq. (8) as a learning rate for the j-th mod-
ule. Each module learns by back-propagation method
in which the error vectors at the output layer is mul-
tiplied by the weight.

In order to let more modules learn when the net-
work output is less close to the desired value, the pa-
rameter o in eq. (8) is modulated as

o? =kE. (9)

4 Experiments

To show the validity of the proposed method, a
number of experiments are performed. Two identi-
cal manipulators are assumed as bodies of the learner
and the demonstrator, respectively. A pair of stereo
cameras corresponds to larner’s view point(see Fig.6).

In this experiment, the learner observes six markers
on each manipulator as features on the each body.
Using color tracking vision system (FUJITSU), the
learner tracks them on the observed image (640 x 480
[pixel]) which includes the stereo images combined by
field multiplexer. The baseline is about 60 cm.



The demonstrator

manipulator manipul ator

Figure 6: Assuming the learner and the demonstrator
as two identical manipulators.

4.1 The capability of the neural network
module

In order to confirm whether each neural network
module can realize the view transformation mecha-
nism, an experiment using only one neural network
module is shown first. Given the views Vi ([l1],[r1])
observing the demonstrator and those Vo ([L],[R]) ob-
serving the learner itself, the neural network learns the
view transformation from V; to Vj.

[lﬂ% o8 E"‘]M
ORI LR

(a) The views of observ- (b) The view of
ing the demonstrator observing the
learner itself

Figure 7: The viewpoints in observing the demonstra-
tors (a) and in observing the learner itself. V; indi-
cates a view point ID for the i-th view point.

Assuming that the postures of both the learner and
the demonstrator are the same, we can use the feature
vector “Fu; as a teacher vector for a corresponding in-
put feature vector “'"u;. In this experiment, instead
of using many feature points, the learner observes six
ones on the demonstrator and on itself at different
two postures. Thus, the learner can use twelve fea-
ture points for learning. Fig.8 shows the input vector
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set 1"y, (Fig.8a, b) and the desired vector set “fu;
(Fig.8c, d).
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(a) The input image [1;] (b) The input image [r1]

50| 50
100 x 100 "
150 - 150 :
i, x
T 200 T 200
5 250| 4 & 250
= % = “
300| S 300 N
x
350| v 350
400| 400
450) the learner's feature points x 150 the learner’sfeature points x
0 100 200 300 400 500 600 0 100 200 300 400 500 600

x [pixel] x [pixel]

(¢) The desired image (d) The desired image
(L] [R]

Figure 8: The input (on [l;],[r1]) and desired output
(on [L],[R]) feature vectors which correspond to ob-
served features on both body parts.

The network receives the feature vectors in [11],[r1]
hrg, §=1,---,12 which are on the demonstrator’s
body, and adapts itself to output the feature vec-
tors on [L],[R] “fu,, i = 1,---, 12 by backpropagation
method. Instead of updating the synaptic weights in
every backpropagation, we update them by sum of the
results of backpropagation of each feature vector.

In order to confirm that the network after learn-
ing realizes the view transformation mechanism, we
input the unexperienced trajectories of demonstration
on [l1],[r1] (see Fig.9 (a, b)). The transformed trajec-
tories are shown in Fig.9 (c, d) with the true trajec-
tories on [L],[R] which is observed when the learner
generates the same motion as demonstration. Since
these trajectories are almost the same, we may con-
clude that the neural network module has a potential
of view transformation mechanism.

4.2 Incremental learning of modules

In order to show the potential of the proposed net-
work for incremental learning, some experimental re-
sults are shown. In this setup, at first the network
learns the view transformation from [11],[r;] to [L],[R],
in which a certain module becomes responsible for the
transformation. Then, given new views Vy ([la],[r2])
and Vs ([ls],[rs]), the network learns additional both
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Figure 9: The input trajectories in view [l1] (a),[r1]
(b) to the learned neural network and the output tra-
jectories of it with the true trajectory in view [L] (c),

[R] ().

view transformations from Vs to Vg, and from V3 to
V. Competitive learning, in which different modules
become responsible for different view transformations,
is realized in this additional learning.

In the first 100 steps, all modules learn with fixed
responsibility weights (each has about 0.33). After
that, the network outputs and learns based on respon-
sible weights which are computed by eq. (8). In the
first period (0 ~ 20,000-th step), the network learns
only one view transformation (from V; to Vj), and
in the second (20,001 ~ 50,000-th step), it learns two
view transformation (from V; to Vg and from Vj to
Vo). In the final step, adding one more view, it learns
three transformation mechanism (from V; to Vg, from
V2 to Vo and from V3 to Vo)

Fig.10(a) shows the learning curves and view tran-
sition to be learned during the learning process. The
transition of responsible weight is shown both in learn-
ing two views (Fig.10b) and in learning three views
(Fig.10c). In these figures, the label V; indicates
which view transformation is to be learned. Since each
weight of a module becomes 1 exclusively, we can un-
derstand each module becomes responsible for its own
view transformation, such as (1st module, from Vs to
Vo), (2nd module, from V; to Vy), and (3rd module,
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from V3 to Vg). Thus, competitive learning is real-
ized.

network output error —

Vi vieve | V1,V2,&V3

regularized squared error
o
o
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(b) Transition of respon-
sible weight in learn-
ing two transformation
mechanism

(c¢) Transition of respon-
sible weight in learn-
ing there transformation
mechanism

Figure 10: The learning curve and transition of each
weight of a module in the incremental learning task.

In order to confirm whether the network after learn-
ing realizes the view transformation mechanism, we in-
put the unexperienced trajectories of demonstration in
the views [11],[r1] (see Fig.11 (a, b)), [l2],[r2] (see Fig.12
(a, b)), and [I3],[r3] (see Fig.13 (a, b)) which are not
included in learning data set. The transformed trajec-
tories by the proposed method (MNN) are shown in
Fig.11 (c, d), Fig.12 (¢, d) and Fig.13 (c, d) with the
true ones (true) on [L],[R] which is observed when the
learner generates the same motion as demonstration,
and also with the transformed ones (matrix) by the
matrix operation in the eq. (5). Since the trajecto-
ries by the proposed method are are close to true one,
we may conclude that the modular network has a po-
tential of incremental learning of view transformation
mechanism. In Fig.13, the trajectories by the matrix
operation are very noisy. From this, it can be said
that the matrix operation is more sensitive than the
proposed method.

5 Discussion

The proposed network for view transformation de-
termines contribution of each module for output de-
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Figure 11: The input trajectories on view [l;] (a),[r1]
(b) and the output trajectories of the proposed
method (MNN) and the matrix operation (matrix)
with the true ones (true) on view [L] (c), [R] (d).

pending on there transforming errors. In order to eval-
uate them, it needs some reference between views. For
this reason, we assume that the posture of the learner
and the demonstrator is the same. Since this assump-
tion seems unrealistic, we need to cope with a problem
how the learner knows the view transformation when
the both postures are different each other.

In order to cope with the problem, Yoshikawa et al.
[11] proposed the method which simultaneously esti-
mates a corresponding posture with the demonstrator
and view transformation by the control to minimize
the transformation error. Although this method is for
the view transformation mechanism based on epipolar
geometry, we tried to apply this idea to the proposed
modular neural network.

In our preliminary experiment, the learner can find
the corresponding posture and correct view transfor-
mation only when the learner’s initial posture is close
to the demonstrator’s. However it may imply that
the problem can be solved if the learner can use some
references. Considering the situation of human imita-
tion, it seems to be natural that the learner can use
some feature points as references, for example chest,
shoulder, hip and so on.

Currently, we have not used the knowledge such
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Figure 12: The input trajectories on view [lo] (a),[r2]
(b) and the output trajectories of the proposed
method (MNN) and the matrix operation (matrix)
with the true ones (true) on view [L] (c), [R] (d).

as rigidity between feature points although we assume
the body structure of the learner and the demonstrator
is the same. Such knowledge may help in searching the
reference between the learner and the demonstrator.
This is our future work.

Neither, we have applied the method to output un-
learned view transformation, which might be repre-
sented by a method to cooperatively integrate mod-
ules. The problem is how to develop such a method,
which it is our future work.

6 Conclusion

In this paper, we proposed an architecture for view
transformation mechanism in the context of view-
based imitation. It has modules which have neu-
ral network structure reflecting the view transforma-
tion mechanism based on epipolar geometry, and learn
view transformation incrementally. These modules are
integrated and learn based on closeness between the
desired value and outputs. In the real robot experi-
ment, we demonstrated that the proposed architecture
learn view transformation incrementally.
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Figure 13: The input trajectories on view [l3] (a),[rs]
(b) and the output trajectories of the proposed
method (MNN) and the matrix operation (matrix)
with the true ones (true) on view [L] (c), [R] (d).
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