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Abstract

To build an adaptive autonomous robot, it must have
a certain number of external sensors to observe the
environment. One physical phenomenon is observed
as sensor signal flows through these sensors. In this
paper, we focus on a “slip” phenomenon and try to
build up a network representation of slip of an an-
thropomorphic robot hand. A robot hand with dis-
tributed tactile sensors and a vision sensor is built
to demonstrate how it acquires the representation of
“slip”. At the beginning of leaning, only the vision
sensor can sense the slip as the movement of target,
but after a while the tactile sensors can sense the
slip even it is so small that the vision sensor cannot
sense.

1 Introduction

To build an autonomous robot that can act in an
unknown dynamic environment, it is extremely nec-
essary for the robot to have a certain number of ex-
ternal sensors to observe the environment. For ex-
ample, a robot hand must have force, tactile, and
vision sensors to achieve robust manipulation of the
object.

Existing control schemes for robot hands usually
need calibration, because it is common for a robot
to accomplish a task defined in a Cartesian coordi-
nate frame [1, 2, 3]. The frame is usually defined
by a human designer, which is different from that
of robot’s own sensors. Therefore, the sensors must
be carefully calibrated with respect to the Cartesian
frame so that the robot can observe its own perfor-
mance in it. Because of the procedure, task perfor-
mance is prone to be affected by calibration errors
and disturbances.

Also, the finger must be solid in these work otherwise
it is extremely severe to calibrate a finger tip with
respect to the Cartesian coordinate frame. Soft fin-
ger tip, however, plays a great role to achieve stable
grasping. Since these facts, Cartesian way of calibra-

tion is not effective to achieve adaptive and stable
grasping.

Let us consider human grasping and manipulation.
A human has several sensor modalities such as vi-
sion, force, and tactile. Although he/she may not
recognize his/her Cartesian coordinate frame, he/she
can realize dexterous manipulation. The reason why
he/she can still do it may be that grasping and ma-
nipulation are defined not in the Cartesian coordi-
nate frame, but in his/her own sensor spaces [4, 5].

From the view of the robot designer, he/she can un-
derstand one physical phenomenon and can extract
it to each sensor modality. As a result, every sen-
sor must be calibrated with respect to the robot
designer’s view, that is, the Cartesian coordinate
frame. However, an autonomous agent can only un-
derstand the phenomenon as sensor signals through
several modalities. To make a representation of a
physical phenomenon inside the agent, it must cor-
rect certain amount of sensor signals and find out the
consistency between the signals. The consistency will
be a representation of the phenomenon.

Although several studies have been devoted to make
the tactile sensors, they try to make well-calibrated
sensors [6, 7, 8]. The only study on uncalibrated
tactile sensors is [9] to the best of our knowledge.
However, in the paper, they discussed only on tac-
tile sensors, and not on the other sensor modality.
As a result, they did not intend to make internal
representation of a physical phenomenon combining
several sensor modalities.

In this paper, we build a robot hand with anthropo-
morphic finger tips, and try to make a representation
of “slip” inside the agent. The finger tip is made
of silicon gum and has several strain gauges inside.
Since the vision and tactile sensors are totally uncal-
ibrated, the robot have to correct data and find out
the relation between them. We proposed a network
to represent the relation, and this will be the most
primitive representation of “slip” inside the agent.
At the beginning of leaning, vision sensor can only
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Figure 1: A robot hand with vision and tactile sen-
sors
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Figure 2: The finger tip is made of silicon gum and
has a bolt at the center, and several strain gauges
inside.

sense the slip as the movement of target, but after a
while the tactile sensors can sense the slip even it is
so small that the vision sensor cannot sense.

2 Robot hand with vision and tactile
sensors

A human has several sensor modalities such as vision,
force, and tactile. Although these sensors are not
calibrated precisely, he/she can sense the slip from
different modality, and can realize dexterous manip-
ulation. How the representation looks like? We try
to understand the mechanism by building a finger
system with uncalibrated tactile and vision sensors
(figure 1).

First, we focus on the finger tip. Softness of the
finger plays a great role for stable grasping, there-
fore the finger is made of silicon gum. Several strain
gauges are put inside. The figure 2 shows the pro-
cedure how the finger tip is made. The reason why
we call it an anthropomorphic finger is that it is soft
and the sensors are distributed randomly like that
of human. The real anthropomorphic finger tip is
shown in figure 3.

Figure 3: An anthropomorphic finger is made of
silicon gum and has several strain gauges inside.

3 Representation of slip in sensor spaces

From the view of the robot designer, he/she can un-
derstand one physical phenomenon and can extract
it to each sensor modality. In this case, however,
every sensor must be calibrated with respect to the
robot designer’s view, that is, the Cartesian coordi-
nate frame. To calibrate all the sensors is tedious
and the robot will not be robust against modeling
error, noise, and disturbance. Since the anthropo-
morphic finger is soft and several strain gauges are
placed randomly, it is extremely hard to calibrate
them with respect to the Cartesian frame. One of
the main reasons is that model of the physical phe-
nomenon is the one of the designer, not the one of
the robot itself.

Since an autonomous agent cannot understand the
physical phenomenon, all it can get are only sensor
signal flows from different sensors. At the beginning
of learning, it can only catch the flows and cannot
see any constancy between them. However, after a
while, it corrects a certain amounts of sensor signals,
and it may be able to find a certain constancy be-
tween them that may be caused from one physical
phenomenon. The consistency will be a representa-
tion of the phenomenon.

In this paper, we focus on “slip.” The hand system
has a vision sensor and the several tactile sensors. All
sensors are not calibrated with a certain coordinate
frame. During the slip phenomenon, the system cor-
rects sensory data and finds the consistency between
them.

4 Network to acquire the representation
of “slip”

We propose to use a simple Hebbian network to get
the consistency (figure 4). There are two layers: a
tactile sensor layer and a vision sensor layer. Signals
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Figure 4: A Hebbian network to find out the con-
sistency between tactile and vision

of each tactile sensor are normalized by the maxi-
mum value over time and are given to each node as
activation. Two neurons in the vision layer are ac-
tivated by displacement of the image target in the
image plane along x and y–axes, respectively.

Since the vision sensor and the tactile sensors are not
calibrated, there is no a priori knowledge on the rela-
tion between them. Therefore, the weights between
the nodes are 0 initially. Imagine that the finger is
contacting with an object. The vision sensor can ob-
serve the object and the finger tip, therefore, when
the finger slips, it is observed by the sensor as the
difference of displacements of the object and the fin-
ger tip in the image plane. Simultaneously, certain
amount of strain information can be obtained by the
tactile sensors. If the direction of one tactile sensor
(in a 3D coordinate frame, say a finger tip frame)
happens to be along the slip direction in the image
plane, the connection between the nodes is strength-
ened according to the Hebbian rule. Over time, the
connection between the vision node and the tactile
node that has the corresponding directions has cer-
tain amount according to their cosine.

The consistency existing in the vision and tactile sen-
sors is, therefore, represented as a weight set of the
network, not in the symbolic way. Although the rep-
resentation is difficult for the robot designer to un-
derstand, it may be a natural expression and easy to
access for the agent.

At the beginning of learning, as discussed above, slip
is mainly observed by the vision sensor. After some

Figure 5: A robot hand system with a camera:
Every finger is equipped with an anthropomorphic
finger-tip made of silicon gum. A camera is placed
above the hand.

trials, the direction of slip can be also sensed by the
tactile sensors. This provides the system redundancy
[10]. That is, even if the vision sensor cannot catch
the slip information because of some reasons, for ex-
ample, because of occlusion, the network still can
detect the slip direction.

Even more interesting thing concerns the sensor res-
olution. Normally, as the device to observe displace-
ment, a tactile sensor is more sensitive than a vision
sensor. As a result, the tactile sensor is expected to
observe the slip earlier than the vision sensor.

5 Experiment

5.1 Experimental equipment

To show how the network learns through experiences,
we build a experimental hand system with anthropo-
morphic finger tips and a vision camera.

In the experiment, we put six strain gauges in each
finger tip. The strain is measured as resistor and
amplified by the sensor amplifier (you can see the



Figure 6: A finger exerts force against a board. The
board is moved by the human operator and the finger
senses by vision and tactile sensors.

amplifier in the figure next to the hand) and fed to
the host computer via an A/D board.

Video signals from a CCD camera are sent via a
tracking module equipped with a high-speed corre-
lation processor by Fujitsu (image size : 512[pixel]
× 512[pixel]). We specify a certain region in the im-
age (called a template) to be tracked before starting
an experiment. During the experiments the module
feeds coordinates, where the correlation measure (it
uses a SAD measure, Sum of Absolute Difference) is
the smallest with respect to the template, to the host
computer.

We put several target marks on a board and it is
moved by a human operator. The displacements of
these targets are observed by the camera. The finger
exerts a certain force on the board, and the infor-
mation from strain gauges enlarge the corresponding
weight of the Hebbian network.

5.2 Experimental results

In figure 7, before learning, the input of the vision
node 1 corresponding to the x-direction in the image
plane, and the activation by the vision sensor are
shown. Since the network is not trained, there is no
consistency between these activations.

After 260 learning trials, what the network obtained
is shown in figure 8. We can see consistency between
the activation by the tactile sensors with that of the
vision sensor. From this results, we can say that
now the tactile and vision sensors are redundant to
sense the “slip.” We can also see that at first the
activation by the tactile sensors gets larger, and then
the vision sensor is activated. The reason may be
that the tactile sensors are more sensitive than the
vision sensors.
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Figure 7: Experimental result 1 : the input of the
vision node 1 corresponding to the x-direction in the
image plane from tactile sensors, and the activation
by the vision sensor, before learning

6 Discussion and future work

In this paper, we have built a robot hand with an-
thropomorphic finger tips, and try to make a rep-
resentation of “slip” inside the agent. Since the vi-
sion and tactile sensors are totally uncalibrated, the
robot have to correct data and find out the consis-
tency between them. We have proposed a network
to represent the consistency, and suggested that this
will be the most primitive representation of “slip”
inside the agent.

An intelligent human can understand physical mech-
anism of slip, and may be able to extract it to each
sensor modality. However, this representation is not
of the robot itself but of the human, that is, slip is not
grounded on robot’s own sensor/motor apparatus.
Therefore, this way of extracting needs calibration
of all sensors with respect to a Cartesian coordinate
frame, and as a result, the system loses adaptabil-
ity. On the other hand, the physical phenomenon is
observed by several sensor modalities, therefore, the
consistency between sensors can be regarded as the
most primitive representation of the phenomenon.
After the robot obtain such consistency existing in
sensor data, it may be able to “understand” the dy-
namics underlying the physical phenomenon. In this
sense, the obtained weights can be the most primi-
tive representation of “slip” with vision and tactile
sensors.

From the sum of activations of the tactile nodes, we
cannot distinguish slip from just pressured. This is
because the “slip” is only defined the displacement
in the image plane in this paper. Basically, our un-
derstanding of slip is more complicated. To acquire
such complicated concept, the robot must have more
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Figure 8: Experimental result 2 : the input of the
vision node 1 corresponding to the x-direction in the
image plane from tactile sensors, and the activation
by the vision sensor, after 260 learning

sensors, and have to find consistency between them.

The “slip” representation in this paper is discussed
only from the viewpoint of sensing. Actually, the
task context is also very important to obtain the rep-
resentation. In this sense, the representation must
be acquired in the context of task, that is, under a
certain sensory-motor coordination.
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