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Abstract

This paper presents a method for simultaneous learn-
ing in multiagent environment to emerge the cooper-
ative behaviors. Each agent has one policy and one
action value function: the former is for action ex-
ecution based on the the action value function up-
dated in the previous stage, and the latter is for learn-
ing based on the episodes experienced by the ε-greedy
method. This makes all agents behave based on the
fixed policies, by which the non-Markovian problem
can be avoided except for the update periods that de-
pends on the learning progress of each agent. In order
to avoid the local maxima due to such asynchronous
renewal of action value functions, optimistic action
values are given as initial ones, that helps the explo-
ration process not to be trapped in the local maxima.
The experimental results applied to one of the co-
operative task in dynamic, multiagent environment,
RoboCup, is shown and a discussion is given.

1 Introduction

Multiagent cooperation is one of the issues to ex-
tend the capability of single robot not simply to in-
crease the efficiency owing to parallel operation but
also to enable the task accomplishment that can-
not be achieved by a single robot such as carrying
a heavy load or passing and shooting in a soccer
game situation. As the environment dynamics in-
crease much more, centralized control of multirobot
seems difficult because the variety of environment
changes become too wide to predict everything in
advance. Therefore, learnig methods are expected to
cope with this problem, and a number of researchers
have considered to apply reinforcement learning [1]
to multiagent domain [2][3][4][5][6][7].

A typical scheme of the reinforcement learning is that
an agent acquires its policy to achieve the goal by
learning the action value function based on the re-
ward given at the current state and the taken ac-
tion. During this process, the Markovian assump-
tion is necessary that the state transition depends

on only the pair of the current state and the taken
action. However, to realize simultaneous reinforce-
ment learning in a multiagent environment seems
very hard because of non-Markovian process due to
the change of the environment caused by the mutual
learning process of agents [8].

In order to avoid this problem, Asada et al. [9] pro-
posed a method of global scheduling by limiting the
number of learning agents only one and by letting the
rests execute the fixed policies acquired in the previ-
ous learning stage. This system needs a kind of cen-
tralized control of switching the learners, which re-
quires the explicit communication lines from the cen-
tral system to the individual learning agents. From
a viewpoint of autonomy, less centralized control is
more preferable.

This paper presents a method for simultaneous learn-
ing in multiagent environment to emerge the cooper-
ative behaviors. Each agent has one policy and one
action value function: the former is for action ex-
ecution based on the the action value function up-
dated in the previous stage, and the latter is for
learning based on the episodes experienced by the ε-
greedy method. This makes all agents behave based
on the fixed policies, by which the non-Markovian
problem can be avoided except for the update pe-
riods that depends on the learning progress of each
agent. In order to avoid the local maxima due to
such asynchronous renewal of action value functions,
optimistic action values are given as initial ones, that
helps the exploration process not to be trapped in the
local maxima. The experimental results applied to
one of the cooperative task in dynamic, multiagent
environment, RoboCup [10], is shown and a discus-
sion is given.

2 Reinforcement Learning

Reinforcement learning has recently been receiving
increased attention as a method for robot learning
with little or no a priori knowledge and higher capa-
bility of reactive and adaptive behaviors. Fig.1 shows



Figure 1: The interaction with the environment in
reinforcement learning

the basic model of robot-environment interaction [1],
where a robot and environment are modeled by two
synchronized finite state automatons interacting in a
discrete time cyclical processes. The robot senses the
current state st ∈ S of the environment and selects
an action at ∈ A. Based on the state and action,
the environment makes a transition to a new state
and generates a reward rt that is passed back to the
robot. Through these interactions, the robot learns a
purposive behavior to achieve a given goal. In order
for the learning to converge correctly, the environ-
ment should satisfy the Markovian assumption that
the state transition depends on only the current state
and the taken action.

2.1 Q-learning

In Q-learning designed by Watkins [11], the action
value function Q(s, a) shows the value of taking the
action a ∈ A at the state s ∈ S, and based on the
reward function r(s, a) given by the designer, it is
updated as follows to approximate the optimal one
Q∗(s, a).

Q(st, at)
← Q(st, at) + α[rt+1 + γV (st+1)−Q(st, at)],(1)

V (st) = max
a∈A

Q(st, a). (2)

The optimal policy π∗ is given by:

π∗(s) = arg max
a∈A

[Q∗(s, a)]{∀s ∈ S}, (3)

where α and γ (between 0 and 1) denote the learning
rate and the discounting factor, respectively. Both
are parameters to control the learning process. If α
is larger, the learning converges fast but more possi-
bility to be trapped at the local maxima. Else, the
learning becomes more conservative and takes longer
time to converge. γ controls to what degree rewards

in the distant future affect the total value of a policy
and is just slightly less than 1. When γ is small, the
learned behavior tends to be reflexive.

The finally obtained action value function Q through
this process can be approximated to the optimal
one Q∗ independently from the exploration strat-
egy adopted during the approximation process. This
property is called “policy-off” type, by which the ex-
ploration strategy to determine the pairs of the state
and the action to be visited can be arbitrary, but it
is required that all pairs of them should be continu-
ously updated.

2.2 ε-greedy method

To resolve the famous problem of the trade-off be-
tween exploitation and exploration to maximize the
total rewards, ε-greedy method is often used in which
random action selection is performed with the prob-
ability ε and the optimal action based on the cur-
rent action value function Q is selected with proba-
bility (1-ε). Usually, the action values are initialized
pessimistically, that is, all zeros (see Fig.2:left), and
gradually approximated to the optimal one Q∗ (see
Fig.3).

Figure 2: Initialization of action-value function

Figure 3: Optimal action-value function

3 The problem of simultaneuos learning

If multiple Q-learning agents adopt ε-greedy method,
the policies often change, and therefore, the Marko-
vian assumption does not hold any more. That is,
to realize simultaneous resinforcement learning in a



multiagent environment seems very hard because of
non-Markovian process due to the change of the en-
vironment caused by the mutual learning process of
agents[8], except for a case where the exploration
area is considerably limited.

In order to avoid this problem, it is necessary to
devise an environment that is satisfies the Marko-
vian assumption.Asada et al.[9] proposed a method
of global scheduling by limiting the number of learn-
ing agents only one and by letting the rests execute
the fixed policies acquired in the previous learning
stage. The central system monitors the learnig pro-
cess to switch the learning agents, and the cooper-
ative behavior is acquired using ε-greedy method.
They applied their method to one of the cooperative
task in a soccer game situation, pass and shoot co-
operation using two robots in the middle size league
of RoboCup. Their system requires the explicit com-
munication lines from the central system to the indi-
vidual learning agents. From a viewpoint of auton-
omy, less centralized control is more preferable.

4 Simultaneous learning based in asyn-
chronous policy renewal

To realize the more decentralized system while
achieving the cooperative behaviors, we propose a
method of asynchronous policy renewal with one pol-
icy and one action value function. In order to realize
the Markovian environment, each agent utilizes the
fixed policy πn based on Qn−1 for action selection
during the n-th learning process while collecting the
episodes for learning (to update Qn). If the learn-
ing of the individual agent converges, it update the
policy πn+1 based on Qn. Thus, the Markovian en-
vironment is realized by adopting the fixed policy
against the other learning agents who have also the
fixed policy based on the same scheme. Each agent
has its own threshold to judge if its learning con-
verges independently, therefore the update timing is
asyncronous.

Actually, each agent computes the summation of op-
timal action values σQ as follows:

σQ =
∑

s

max
a∈A

[Qn(s, a)]{∀s ∈ S}, (4)

and then, its derivative is compared with the pre-
specified threshold θσQ

. If the derivative is smaller
than θσQ

, then the learning function Qn is judeged
as converged.

As the initial action values, we set the higher val-
ues than the reward (1.0) (see Fig.2:right). This is
a kind of exploration strategy for the optimal action
value function (see Fig.3) by reducing the action val-
ues when the selected action is not appropriate at

the current state, which is opposite from the explo-
ration strategy starting from the zero initial values
(see Fig.2:left). The former is called “optimistic”
while the latter “pessimistic” [1]．Since all agents
behaves under the fixed policy πn based on Qn−1,
the optimistic strategy seems preferable because of
its efficient exploration (this is discussed later).

Each agent execute the following algorithm:

1. prepare Qn and πn, and initialize them opti-
mistically,

2. observe the state st ∈ S in the environment,

3. select an action at ∈ A at the current state s
under the action policy πn,

πn(s) = arg max
a∈A

[Qn−1(s, a)]{∀s ∈ S} (5)

4. then, the state transits to the next one st+1 ∈ S
after exection of the action at, and

5. the immediate reward rt+1 is given from the en-
vironment,

Qn(st, at)← Qn(st, at) + α[rt+1

+γV (st+1)−Qn(st, at)] (6)

V (st) = max
a

Qn(st+1, a) (7)

Thus, by updating the action value function Qn,
the optimal one Q∗ can be approxinated,

6. if Qn converges, update the policy πn+1(s).

πn+1(s)← arg max
a∈A

Qn(s, a) (8)

7. return 2.

5 Experiments

We applied the proposed method to a soccer game
situation, more correctly, a cooperative task of pass
and shoot using two mobile robots in the middle size
league of RoboCup [10]. The success of cooperative
behavior is that both passer and shooter are able to
get reward during one trial of learning. Actually,
This cooperative behavior is most reasonable behav-
ior of getting goal in the limited time Fig.4 indicates
the competition filed [8m x 4m] where two learn-
ing robots (passer and shooter) moves around and a
ball is located at randomly BALL AREA (one of ten
positions inside the area). The sampling rate is 33
[msec] corresponding to video frame frequency, and
the agent repeats the same action execution until the
state changes [12].



Figure 4: Initial positions in the computer simula-
tor

Figure 5: A mobile robot,a ball and goal(back)

Fig.5 indicates the ball and non-holonomic real robot
(PWS) that has the omnidirectional vision system
and the kicking device. The internal structure is
shown in Fig.6．

The state space is given by quantizing the perceived
visual field in terms of orientation (eight diretions)
and distance (four) as shown in Fig.7. The observed
object (an opponent, a ball, and an opponent goals)
is localized as one of tessellated trapezoids. if any ob-
ject isn’t observed(overlap,etc),it is counted a miss-
ing state. The front direction has finer resolution
than others so that the kicking devise can work well.
Totally, the dimension of the state space is six (three
kinds of objects and their directions and distances)
and the number of element states including a missing
state is (8 × 4 + 1)3 = 35937, and the action space
consists of four kinds of actions of forward, backward,
right turn, and left turn. The kicking devise works
everytime it can kick the ball.

The reward functions are defined as follows:

• For the passer: the reward 1 is given when it suc-
ceeded in passing the ball to the shooter, that
is, when the state s = { ball direction, ball dis-
tance, goal direction, goal distance, shooter di-
rection, shooter distance } = {0, 0, a, b, c, d}(a =
0or1, c = 0or7, bandd are arbitrary), then take
a forward motion,

• For the shooter:the reward 1 is given when it
succeeded in shooting the ball into the goal, that
is, when the state s = {ball direction, ball dis-

Figure 6: An overview of the robot system

0 1 2 3

0 1

2

3

4

5

6

7

Figure 7: A state space of the agent

tance, goal direction, goal distance, shooter di-
rection, shooter distance } = {0, 0, a, b, c, d}(a =
0, bandcandd are arbitrary), then take a forward
motion,

• Any collision between the passer and the shooter
gives the negative reward −1 to the passer,

• else, 0 rewards.

The learning pareameters α = 0.2，γ = 0.9.

6 Experimental results

We tested the following three methods,

• The proposed method with optimistic initial val-
ues (1.0 ∼ 1.0001)

• The global scheduling method with pessimistic
initial values (0.0)

• No scheduling with pessimistic initial values
(0.0)

and the changes of the success rate of the cooperative
behaviors are shown in Fig.8 where the convergence
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Figure 8: Comparison of scheduling methods
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Figure 9: Transition of σQ in optimistic initializa-
tion

threshold θσQ
= 0.01, and the change of the tran-

sition of σQ and the change of the renewal frequen-
cies for both agents are shown in Fig.9, Fig.10. We
checked that the proposed method with pessimistic
initial values has not been able to learn any coop-
erative behaviors , and the change of the transition
of σQ and the change of the renewal frequencies for
both agents are shown in Fig.11, Fig.12.

while the global scheduling and no scheduling with
optimistic initial values has the almost same perfor-
mance with the pessimistic ones. Further, the chenge
of the success rate of the cooperative behavior dur-
ing 1000000-th trial and 1200000-th one in terms of
the threshold θσQ

is shown Fig.13．

¿From these results, we may conclude:

1. no scheduling: regardless of the initial values,
the cooperative behavior was not obtained be-
cause of non-Markovian environment caused by
mutual learning,

2. global scheduling: regardless of the initial val-
ues, the cooperative behavior was obtained be-
cause the Markovian environment is held, and

3. proposed method: the success rate depends on
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Figure 10: Renewal frequency in optimistic initial-
ization
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Figure 11: Transition of σQ in pessimistic initial-
ization

the initial value and also the threshold, too.

The third point can be interpreted as follows. In
the case of the pessimistic initial values, almost no
change in σQ because of narrow exploration in the
very early stage, therefore high frequency of re-
newal, however, the immediate rewards after this
stage biased the exploration and therefore much
more chances of being trapped into the local max-
ima, and consequently σQ tends to be unstable that
corresponds to low frequency of the renewal (see
Fig.11,Fig.12). On the other hand, in the case of
the optimistic initial values, the early rewards may
have big changes in σQ because of the broad explo-
ration due to high values and as a result the optimal
action is easily found and action values for inappro-
priate pairs of the states and actions immediately de-
creased, which prevents the frequent renewals of the
action value functions ( σQ tends to be unstable that
corresponds to low frequency of the renewal in the
early stage: see Fig.9,Fig.10). After this stage, the
action value function converges and therefore high
renewal frequency.

However, this causes the sensitivity to the threshold
of learning convergence (see Fig.13). If the thresh-
old is too large, it means too frequent renewal and
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Figure 12: Renewal frequency in pessimistic initial-
ization
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Figure 13: Comparison of threshold value

is almost equivalent to no scheduleing. On the other
hand, if the threshold is too small, it means much less
frequecy of renewal, that is, less exploration while
more explotation, and it is easily trapped into the
local maxima. Therefore, the selection of the thresh-
old is important.

Fig.14 shows a sequence of cooperative behavior re-
laized by transferring the learned final policies into
our robots. Due to the difference between the com-
puter simulation and the real world, the success rate
is not so high as the computer simulation. However,
reasonable performance was obtained.

7 Conclusion

The method that enables simultaneous learning in
the multiagent environment is proposed and it is ap-
plied to a typical cooperative task of pass and shoot
in a soccer game situation, RoboCup. Asynchronous
renewal of action value functions with optimistic ini-
tial values is a key idea of the method.

The method is sensitive to the threshold of the learn-
ing convergence decision. A systematic way to deter-
mine the threshold is one of our future work.
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Figure 14: A sequence of cooperative behavior by real robots


