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Abstract. Since the vision sensors bring a huge amount of data, visual
attention is one of the most important issues for a mobile robot to ac-
complish a given task in complicated environments. This paper proposes
a method of sensor space segmentation for visual attention control that
enables efficient observation by taking the time for observation into ac-
count. The efficiency is considered from a viewpoint of not geometrical
reconstruction but unique action selection based on information crite-
rion regardless of localization uncertainty. The method is applied to four
legged robot that tries to shoot a ball into the goal. To build a decision
tree, a training data set is given by the designer, and a kind of off-line
learning is performed on the given data set. The visual attention control
in the method and the future work are discussed.

1 Introduction

Mobile robots often have visual sensors that bring a huge amount of data for
decision making. Therefore, attention control which extracts necessary and suf-
ficient information for the given task is demanded for efficient decision making.
We have proposed a method of efficient observation for decision making [1],
which assumed that the sensor values were quantized in advance and observa-
tion cost (the time needed for the camera head motion and image acuisition) did
not vary. For more adaptive and efficient observation, self-segmentation of the
sensor space for attention control is necessary.

In the reinforcement learning area, the number of states should be minimum
because the learning time is exponential to the size of the state space [2]. Then,
several sensor space segmentation methods for state space construction have
been proposed (Takahashi et al.[3], Yairi et al.[4], Kamiharako et al.[5], and
Noda et al.[6] ). However, they did not consider the actual time for observation
nor used an active vision system. Kamiharako et al.[5] showed some results with
the coarse to fine attention control but they adopted the omni-directional vision
system by which the robot capture the image whole around of itself.

In this paper, we propose a method of sensor space segmentation for visual
attention control that enables efficient observation taking the time needed for
observation into account. The efficiency is considered from a viewpoint of not



geometrical reconstruction but unique action selection based on information cri-
terion regardless of localization uncertainty. The method is applied to four legged
robot that tries to shoot a ball into the goal. To build a decision tree, a training
data set is given by the designer, and a kind of off-line learning is performed on
the given data set.

The rest of the paper is organized as follows. First, the method is intro-
duced along with basic ideas related to information criterion, efficient obser-
vation, prediction model, and decision making. Then, the experimental results
using RoboCup four-legged robot league platform (almost same as Sony AIBO)
are shown. Finally, discussion on the visual attention control in the method is
given and the future works are shown.

2 The method

2.1 Assumptions

We assume, 1) the robot needs to pan and tilt its camera to acquire the necessary
information for action selection, since the visual angle of the camera is limited. 2)
The environment includes several landmarks, which provide the robot sufficient
information to uniquely determine the action from their views. 3) Sufficient
training data for decision making are given. We used a teaching method to
collect such data. A training datum consists of a set of the appearance of the
landmarks and the action to accomplish the task at the current position. During
the training period, the robot pans its camera head from the left-most angle to
the right most one, and observes as many landmarks as possible.

There are methods which construct a classifier in the form of decision tree
with information gain, such as ID3 and C4.5 [7]. To construct a decision tree, we
need a training data set. Each datum consists of a class which it belongs to and
attribute values by which we classify it to the class. If we apply these methods, a
class and an attribute correspond to an action and a sensor, respectively. When
we use ID3 which only handles quantized attribute values, 1) we calculate each
information gain Ii in terms of action after observing sensor i, 2) divide data set
according to the sensor values with the largest information gain. We iterate these
process until the information gains for all sensors become zero or the action in
the divided data becomes unique. In an action decision tree, a node, an arc, and
a leaf indicate the sensor to divide data set, the sensor value, and the action to
take, respectively. C4.5 handles continuous attribute values by dividing data set
with a threshold. The threshold to divide is determined so that the information
gain can be the largest after the division. Due to the limited view angle of its
camera, the robot needs to change its gazes in order to know whether a landmark
is observed on the left side of the threshold or not. However, it needs only one
gaze to know whether a landmark is observed inside a limited area (attention
window) or not. Therefore we use an attention window which maximize the
information gain for dividing the training set into two sub-sets.



2.2 Information gain by observation

Suppose we have r kinds of actions and n training data. First, calculate the
occurrence probabilities of actions pj (j = 1, ..., r) as pj = nj/n , where nj

denotes the number of taken action j. Therefore, the entropy H0 for the action
probability is given by

H0 = −
r∑

j=1

pj log2 pj . (1)

Next, calculate the occurrence probabilities of actions after observation. After
the observation, it knows whether the landmark is inside the attention win-
dow (θLk, θUk] or not. The lower and upper limits of a window θLk, θUk are
a pair of middle points of adjacent sensor values of the training data. We de-
note the number of times action j was taken as nI

ijk when the landmark i was
observed in (θLk, θUk] and nO

ijk when not observed. Then, the occurrence prob-
ability becomes, pI

ikj = nI
ikj/nI

ik, pO
ikj = nO

ikj/nO
ik . Where nI

ik =
∑r

j nI
ikj , and

nO
ik =

∑r
j nO

ikj . Next, calculate the entropy after the observation, as follows:

Hik = −
∑

x={I,O}

nx
ik

nik

r∑

j=1

(px
ikj log2 px

ikj). (2)

The information gain by this observation is Iik = H0−Hik. The larger Ii is, the
smaller the uncertainty is after the observation.

2.3 Actual time for observation

When the time for observation is constant, we can use information gain for mak-
ing action decision tree. The tree becomes compact and the robot can determine
its action at shortest observation time by following the tree. However, if the time
for observations changes depending on the gaze directions, the time for action
decision can be longer using the tree. Therefore, we use the information gain per
time, in other words the velocity, rather than information gain.

We denote T as the time to get the observation after previous observation,
and information gain per time iik as,

iik =
Iik

T + a
. (3)

Here a is a positive constant. When the direction is already observed T = 0.

2.4 Making an action decision tree

We put the attention windows into the tree in decreasing order of uncertainty
after its observation. Based on iik we divide training data into two subsets until
the action in the subset becomes unique. For the training data which take dif-
ferent actions for the same situation, we add a leaf for each action and record
the probability that it was taken.



For example, suppose we have training data as shown in the left of Table
1. The numbers in the table indicates the direction in which the landmark was
observed. The view angle is limited and it can gaze and observe three areas
[0, 15), [15, 30), [30, 45). It gazes in [15, 30] at the beginning of action decision,
and needs one period of time to change the direction to observe. Since px = 2/4,
py = 1/4, and pz = 1/4, H0 is 1.5. The information gain by observation Iik and
the information gain per time iik are shown in the right of Table 1. Since iik
of the observation which checks whether the landmark A is in [27, 30) or not
is the largest, we put this to the root of the tree. If the landmark is in [27, 30)
the action is unique and it is y. Else, the subset has three training data and the
actions are not unique. The information gain per time of observation whether
landmark B is in [0, 15) or not and observation whether landmark A is in [30, 40)
or not is 0.05. We prefer left [0, 15) to observe and the action decision tree is
shown in Fig.1.

Table 1. Example training data (left) and calculated information and information per
time (right). Lm means landmark.

Data # Lm A Lm B action

1 5 5 x
2 25 15 x
3 30 10 y
4 40 30 z

Observation Info. Iik Info. / time iik
0 ≤ (LmA) < 15 .31 .15
15 ≤ (LmA) < 27 .31 .31
15 ≤ (LmA) < 30 .50 .50
27 ≤ (LmA) < 30 1.4 1.4
30 ≤ (LmA) < 45 1.4 .70
0 ≤ (LmB) < 7 .31 .15
0 ≤ (LmB) < 12 .5 .25
0 ≤ (LmB) < 15 1.4 .70
7 ≤ (LmB) < 12 1.4 .70
7 ≤ (LmB) < 15 .5 .25
30 ≤ (LmB) < 40 1.4 .70

Observe [15, 30), if 27<=(Landmark A)<30

then

take action y

else

Observe [0, 15) and if 0<=(Landmark B)<15

then

take action x

else

take action z

Fig. 1. Action decision tree of the example data



2.5 Making a decision

In order to make a decision on which action to take, first, the robot calculates
the observation probability x(t) from previous x(t − 1) and action a(t − 1) if
possible. If no prediction model is applicable, use the probability 1 or 0 if the
direction of the window has been observed, otherwise the probability is 0.5. Then
it updates x(t) by the observation and calculate action probabilities. An action
probability is the sum of the probability to reach leaves to take that action in
the action decision tree. If one of the action probabilities is very high, it takes
that action. Otherwise, until one of them becomes high enough, it continues to
check attention windows from the root of the action decision tree, update the
observation probability, and the action probabilities.

3 Experiments

3.1 Task and Environment

The task is to push a ball into a goal based on the visual information. We used
a legged robot for the RoboCup SONY legged robot league (Fig.2). The robot is
equipped with a limited view angle camera. In the field, there are 8 landmarks,
that is, target goal (TG), own goal (OG), north west pole (NW), north east pole
(NE), center west pole (CW), center east pole (CE), south west pole (SW), and
south east pole (SE). All the landmarks and the ball are distinguished by their
colors.

The view angle / number of image pixels of the robot’s camera are about 53
degrees / 88 pixels in width, and about 41 degrees / 59 pixels in height. Each
leg and the neck have three degrees of freedom. We fixed the joint angles of the
legs and the role of the neck joint when it observes the landmarks and the ball
to make its decision. The robot can rotate the pan joint from -88 to 88 degrees
and the tilt joint from -80 to 43 degrees. We prepared five directions (every 44
degrees) in the pan joint and four directions (every 40 degrees) in the tilt joint
to observe. The maximum angular velocity of the pan joint is 5.9[rad/s] and
3.9[rad/s] in the tilt joint. The robot waits at least for 0.16[s] after rotating pan
or tilt joint. Since it needs at least 0.29[s] before action decision after changing
observing directions, we prepared a = 0.29[s].

As vision sensors, we used the coordinates of the image centers of the land-
marks and the ball, the minimum x/y and maximum x/y (totally four) of the
goals. We did not directly use the values in the images, but converted to the pan
and tilt angles when the targets are viewed at center of an image. And, we used
pair of the pan (x) and tilt (y) angles as a sensor value rather than one of them,
or we divided training data-set by the observation to check whether a sensor
value is in the rectangle of (xmin, ymin)− (xmax, ymax) (attention window). This
is because if we divide the data-set by the observation to check whether the x is
in [10, 20) or not, we have to rotate the tilt angle to check whole y variation.



Fig. 2. The legged robot for RoboCup SONY legged robot league (left) and the field
(right).

3.2 Experimental results

We trained the robot starting from one of three positions in the middle of the
field. We prepared seven actions, try to reach the ball, move forward, move left /
right forward, turn left / right, and turn leftward / rightward. For each starting
position, we trained five times and obtained 99 data points to construct trees.
We show the part of the action decision tree in Fig.3. The unit of the figures are
degrees. When the robot has no prediction and not observed yet, first attention
window is rectangle of (−19,−8)−(−8, 18) for the ball and observe the direction
(3, 2) (Fig.4(a)). Direction (X,Y ) indicates the direction of observation. X is the
panning direction (1, ..., 5) and 3 if it is center. Y is the tilt direction (1, ..., 4)
and 2 if it is horizontal. Since the robot is facing (3, 2) at the beginning of
action decision time, the direction (3, 2) is preferred by nodes near the root of
the tree. If the center of the ball image is in the window, the next window is
(−19,−10)− (−18,−13) for minimum y of TG and the direction is same (3, 2)
(Fig.4(b)). If it is in the window, try to reach the ball otherwise move forward.
If the center of the ball image is not in the first window, the next windows to
check is (−19,−18) − (18, 18) for minimum x of TG and the direction is (3, 2)
(Fig.4(c)). If it is in the window check the next window (−19,−10) − (4, 4)
(Fig.4(d)) and so on.

We show and compare the attention windows generated by three methods in
Fig.5-7. Fig.5 shows the attention windows generated with pre-quantized sensor
values in every 20 degrees without time consideration (we directly used informa-
tion gain rather than velocity). Fig.6 shows the one generated by the proposed
segmentation method without time consideration. Fig.7 shows the one generated
with proposed segmentation method with time consideration. With these figures
we can see that pre-quantized segmentation is not efficient for decision making



[ball] -19<x<11, -8<y<18 (Fig.5(a)) then

[TG ymin] -19<x<-10, -18<y<-13 (Fig.5(b)) then

Do TryReachBall

else

Do Forward

[TG xmin] -19<x<18, -18<y<18 (Fig.5(c)) then

[TG xmin] -19<x<4, -10<y<4 (Fig.5(d)) then

Do Forward

else

[TG xmin] -19<x<11, -15<y<-3 then

Do RightTurn

[TG xmin] -6<x<18, 15<y<18 then

[TG xmin] -12<x<11, -1<y<18 then

[ball] 27<x<46, 26<y<32 then

Do RightFoward

else

Do RightTurn

else

Do LeftRotate

[TG xmin] 15<x<18, -8<y<4 then

[CW] -52<x<-30, -15<y<5 then

Do Forward

else

Do RightTurn

else

Do Forward

:

Fig. 3. Part of action decision tree generated by proposed method

and with time consideration the windows are preferred which bring information
gain faster rather than the ones which bring higher information gain.

We show the comparison of quantization and consideration of time in Table
2. We compare the number of nodes (windows) in a tree (# of nodes), depth
of the tree, the number of expected observing directions, the expected time
for observation (time). The expected number of observing directions and time
are the one when it does not use predictions. The proposed quantization shows
smaller size of the tree and the number of expected observing directions. And it
can reduce the time for observation to half by using information gain per time.

The mean time for observation without predictions in experiments with real
robots were 6.6[s] with pre-quantization method, 5.2[s] with proposed quantiza-
tion without time consideration and 2.5[s] with proposed method. Though the
time is longer than expected, the time of proposed method is below half of other
methods.
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(b) Window for
min. y of TG
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(c) Window for
min. x of TG
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(d) Another win-
dow for min. x of
TG

Fig. 4. Attention windows

4 Discussions and conclusions

We showed that a decision tree which is constructed with greedy for information
gain or information gain per time. Efficient observation for decision making was
achieved by greedy approach. However, decision making with tree constructed
with greedy approach may prone to sensor noise, occlusions, and so on [4]. Occlu-
sions are ignored if an action is determined without occluded windows, otherwise
they may lead to wrong action selection. Currently, training data should contain
the some variations with sensor values which cover noises or occlusions, so that
the reliability is reflected to the information gain. The sufficiency of training
data is measured with the actions determined by the action decision tree. If you

Table 2. Comparison of sizes of the tree, expected number of observing directions,
and expected time for observation

# of nodes, depth, # of leaves, directions, time[s]

pre-quant. 61 18 31 7.6 2.8
quant. only 39 11 20 5.5 2.0
proposed 59 15 30 3.4 0.83
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Fig. 5. Created attention windows by pre-quantization method without time consid-
eration.

can use some prediction model it will help to solve the problem of temporal
occlusions.

We showed only the results without prediction model. Since the data were
not enough for simple least square method. A prediction model which can be
consists from small data robustly is expected.

To conclude, we proposed a method to make a decision tree with an au-
tonomous sensor value segmentation with consideration for variance in time in-
terval to acquire observation. Attention control is done by observation following
a decision tree which is constructed based on information criterion with sensor
space segmentation. The validity of the method was shown with a four legged
robot.

Acknowlegement

Part of this research was supported by the Japan Science and Technology Cor-
poration, in Research for the Core Research for the Evolutional Science and
Technology Program (CREST) title Robot Brain Project in the research area
”Creating a brain”.

References

1. Noriaki Mitsunaga and Minoru Asada. Observation strategy for decision making
based on information criterion. In Proceedings of the 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1038–1043. 2000.

2. S. D. Whitehead. A complexity analysis of cooperative mechanisms in reinforcement
learning. In Proceedings of AAAI-91, pages 607–613, 1991.

3. Yasutake Takahashi, Minoru Asada, and Koh Hosoda. Reasonable performance in
less learning time by real robot based on incremental state space segmentation. In



� �����

��� �

��� �

� �

� �

� ��� � ����� ����� ��� ��� ��� �

�	
 �
�
�

���
��
�

����������������� ��� ��!

Fig. 6. Created attention windows by proposed segmentation without time considera-
tion.

� �����

��� �

��� �

� �

� �

� ��� � ����� ����� ��� ��� ��� �

�	
 �
�
�

���
��
�

����������������� ��� ��!

Fig. 7. Created attention windows by proposed method.

Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1518–1524, 1996.

4. Takehisa Yairi, Shinichi Nakasuka, and Koichi Hori. State abstraction from hetero-
geneous and redundant sensor information. In Y. Kakazu, M. Wada, and T. Sato,
editors, In Proc. of the Intelligent Autonomous Systems 5, pages 234–241, 1998.

5. Masatoshi KAMIHARAKO, Hiroshi ISHIGURO, and Toru ISHIDA. Attention con-
trol for state space construction. In Y. Kakazu, M. Wada, and T. Sato, editors, In
Proc. of the Intelligent Autonomous Systems 5, pages 258–265, 1998.

6. Minoru Asada, Shoichi Noda, and Koh Hosoda. Action based sensor space segmen-
tation for soccer robot learning. Applied Artificial Intelligence, 12(2-3):149–164,
1998.

7. J. Ross Quinlan. C4.5: PROGRAMS FOR MACHINE LEARNING. Morgan Kauf-
mann Publishers, 1993.


