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Abstract

This paper proposes a developmental learning model
for joint attention between a robot and a human care-
giver. The proposed model has abilities to acceler-
ate the learning and improve the final task perfor-
mance owing to two kinds of developments: a robot’s
development and a caregiver’s one. The robot’s de-
velopment means that the sensing and the actuating
capabilities of the robot change from immaturity to
maturity. On the other hand, the caregiver’s devel-
opment is defined as that the caregiver changes the
task from easy situation to difficult one. The pro-
posed model causes these developments according to
the learning progress of the robot. The experimental
results showed what kinds of effects the developments
bring to the learning.

1 Introduction

Robot learning can be accelerated and/or its final
task performance can be improved by the develop-
mental approaches. From a view point of cogni-
tive developmental robotics [1], it is also meaningful
that a learning system for a robot has developmen-
tal mechanisms toward making clear the emergence
of intelligence and applying it to engineering.

Some researchers have attempted to apply
the developmental approaches to robot leaning.
Dominguez and Jacobs [4] showed that the learned
performance of binocular disparity sensitivities by a
developmental model was better than that by a non-
developmental model. They constructed their de-
velopmental model by adding the spatial frequency
information of an input image, that is divided into
three levels: low, medium, and high frequencies, ac-
cording to the learning time step. Metta et al. [10]
built their developmental model to learn saccadic
motion by changing the resolution of the input im-
age from coarse to fine states. They also showed that
their developmental model improved the final task
performance. As above, it was realized that the de-

velopmental approaches improved the final task per-
formance. However, the developmental mechanisms
of their learning models were only built in the inter-
nal system of the robot. Uchibe et al. [15] proposed a
method to control the environmental complexity and
the cognitive capability of the learning robot. They
showed that the robot learning of a soccer task was
accelerated by their developmental model. However
the final task performance was not improved by their
model compared to a model with only the change of
the environmental complexity.

It is well known in the developmental cogni-
tive science that the developments of the atten-
tional and the memorial abilities of children and
caregiver’s adaptive responses according to the chil-
dren’s level help the children to learn their first lan-
guages [5, 8, 13]. In other words, both development
of internal mechanisms of a learner (robot’s develop-
ment) and that of caregiver’s response mechanisms
(caregiver’s development) have potential to make the
learning more efficient and improve the final task per-
formance.

Joint attention is one of implicated tasks with de-
velopment. Because the ability of joint attention is
a fundamental one to communicate with others and
acquire other social abilities, such as language un-
derstanding and mind reading [2]. Many researchers
in cognitive developmental psychology have interests
in it, because it is known that the ability of joint at-
tention helps the children’s development [12]. In the
research area of engineering, some researchers have
attempted to realize social communication between
a human and a robot by constructing a joint atten-
tion mechanism inside the robot [7, 9, 14]. However,
the joint attention mechanisms for their robots were
built by the designers, and the psychological implica-
tion between the learning of joint attention and the
development has not been involved.

This paper proposes a developmental learning
model for joint attention that can accelerate the
learning and improve the final task performance.



This model has two kinds of developments: a robot’s
development and a caregiver’s one, and causes these
developments by the learning progress of the robot.
The robot’s development is defined as that the sens-
ing and the actuating capabilities of the robot change
from immaturity to maturity. The caregiver’s devel-
opment means that the caregiver changes the task
from easy situation to difficult one. First, the joint
attention problem is defined, and it is argued how an
infant acquires its ability. Next, the proposed devel-
opmental learning model is described and evaluated
through some experiments. Finally, conclusions and
future work are given.

2 Joint Attention

2.1 Task Definition

Joint visual attention is defined as that an agent at-
tends to the same object which another attends to.
Figure 1 shows a process of joint attention between
a robot and a caregiver. In this situation, the robot
is the agent of the action. First, the robot observes
the caregiver and estimates the direction of the care-
giver’s attention. Next, the robot turns the camera
to the estimated direction and identifies the object
which the caregiver attends to. These two steps are
required for joint attention.
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Figure 1: Joint visual attention between a robot and
a caregiver. The robot (1) observes the caregiver and
(2) identifies the object which the caregiver attends
to.

2.2 Acquisition of The Capability of Joint
Attention by A Human Infant

How does a human infant acquire the capability of
joint attention? We refer to the following knowledge
from developmental cognitive science to construct a
developmental learning model for joint attention for
a robot.

• An infant has an innate preference for a human
face and observes it more closely than anything
else [3, 6].

• A caregiver provides appropriate feedback to an
infant, and it enables the infant to acquire the
ability of joint attention [11].

• An infant can learn the ability of joint atten-
tion with a learning system based on reward,
although he/she does not understand the mean-
ing of the attention [11].

It is summarized that the learning of joint attention
by an infant consists of two fundamental systems in
the infant: a face detection system and a learning
system based on reward, and one more system in the
caregiver: an appropriate feedback system. Once the
infant began joint attention, he/she can acquire the
meaning of attention through the interactions among
the three: the infant, the caregiver, and an object.

3 Developmental Learning Model for
Joint Attention

The proposed developmental learning model for joint
attention based on the previous arguments is shown
in Figure 2. This model consists of two modules:
one is a neural network for a robot and another is
a task evaluator for a caregiver. The robot learns
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Figure 2: A developmental learning model for joint
attention



the network based on a reward which is provided
by the caregiver, and in parallel with the learning,
the robot and the caregiver have each developmental
mechanism.

3.1 Neural Network for A Robot

The neural network for a learning robot has four lay-
ers: an input layer, a retina one, a visual cortex one,
and an output one. The inputs to the network are
left and right camera images when the robot observes
the caregiver (the situation shown in Figure 1 (1)),
and the outputs are motor commands to attend to
the same object which the caregiver attends to (the
situation shown in Figure 1 (2)).

The developmental mechanism for the vision sys-
tem of the robot is implemented in the connection
weights between the input layer and the retina one.
The information on the input and the retina layers
are represented as images. The connection weight
W ir

k between the two layers at the learning time step
k is given by a Gaussian spatial filter

W ir
k = exp

(
− (x− xc)2 + (y − yc)2

2σk
2

)
, (1)

where (x, y) ,(xc, yc), and σk denote a position in the
input image plane, a position of a target pixel of the
spatial filter, and the sharpness of the spatial filter
at k, respectively. The σk is determined by the task
error1E

σk = σinit

(
Ek−1 − Efin

Einit − Efin

)
, (2)

where σinit is a initial value of σk, Ek−1 is the task
error at the learning time step k− 1, Einit and Efin

denote the initial task error and the tolerance after
the learning. This shift of σk means that the shape
of the spatial filter changes from flat to steep, and
this is regarded as visual development. The update
of σk is triggered by the learning progress, that is
when Ek−1 < minEj (0 ≤ j < k − 1). The left sides
in Figure 3 (a) and (b) show the appearances of
the visual development inside the robot. In the early
stage of the learning, (a) the retina image is blurred
because the spatial filter is flat, and (b) the retina
image becomes clear as well as the input one because
the filter becomes steep in the later stage.

Other connection weights, W rc
k between the

retina layer and the visual cortex one and W co
k be-

tween the visual cortex layer and the output one, are
adjusted by the learning based on the reward. The
robot executes the motor commands as the outputs

1Task error Ek is the average of the output errors ek be-
tween the gaze direction of the robot’s camera and the the
object position in various situations, and it means the task
performance at the learning time step k.
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Figure 3: The appearances of the robot’s develop-
ment (in the left sides) and the caregiver’s one (in
the right sides)

of the neural network and receives a reward R = 1 or
0 as an evaluation of the action. The reward R = 1
means that the joint attention task is achieved, and
R = 0 means that the task is not achieved. Then,
the connection weights W rc,co

k are updated as follows

W rc,co
k+1 =

{
W rc,co

k , when Rk = 1
W rc,co

k ±∆W, when Rk = 0 (3)

where ∆W is a small random value. The reward Rk

is determined by the caregiver according to the out-
put error ek between the motor output of the robot
and the object position and the task error Ek−1.

3.2 Task Evaluator for A Caregiver

The task evaluator for a caregiver has two layers: an
error layer and a reward one. The caregiver deter-
mines the reward R which is provided to the robot
in accordance with the output error of the robot.

First, the caregiver measures the output error
ek between the gaze direction of the robot’s camera
and the object direction at the learning time step k.



Then the caregiver determines the reward Rk

Rk =
{

1, when ek ≤ θk

0, when ek > θk
(4)

where θk is the tolerance of the output error at k.
The θk is defined as

θk = Ek−1 − ε, (5)

where ε is a small value. The update of θk is trig-
gered by the learning progress as well as σk, that is
when Ek−1 < min Ej (0 ≤ j < k − 1). This shift of
θk means that the caregiver change the task evalua-
tion from easy situation to difficult one, and this is
regarded as the caregiver’s development.

The appearances of the caregiver’s development
are shown in the right sides of Figure 3 (a) and (b) in
contrast with the robot’s development. In the early
stage of the learning, (a) the caregiver sets the re-
ward area defined by θk as wide because the task er-
ror Ek has large value, so that the robot can learn the
task easily. By contrast, (b) the caregiver changes
the reward area as narrow and makes the task learn-
ing more accurately in the later stage.

4 Experiment

4.1 Experimental Setup

The experimental environment is shown in Figure 4
(a), and the camera head of the robot is shown in
Figure 4 (b). The robot is set in the face of the
caregiver, and the each position of the robot and the
caregiver is fixed. First, the caregiver holds an object
in its hand and moves it to various positions within
the range of the robot’s vision. Then, the caregiver
directs its attention to the object. At the same time,
the robot observes this scene through its cameras and
inputs the face images of the caregiver to the neural
network. The neural network estimates the direction
of the caregiver’s attention and outputs two motor
commands: pan and tilt angles common to left-and-
right cameras, to direct the robot’s attention to the
same object. As a result of this process, the robot
receives a reward from the caregiver and learns the
neural network based on it.

4.2 Evaluation of The Learning Speed

To evaluate the learning speed of the proposed
model, the error transition was compared with other
three models. Figure 5 shows the transitions of
the average of the normalized output error through
the learning process. Where the RC-dev. model is
the proposed model which has the robot’s develop-
ment and the caregiver’s one, and the R-dev. model,
the C-dev. model, and the matured model denote a
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Figure 4: An experimental setup for joint attention

model which has only the robot’s development, which
has only the caregiver’s one, and which does not have
the developmental mechanism, respectively. What
the model does not have the development means
what the model has the matured mechanism. In
other words, the connection weight W ir

k of the ma-
tured mechanism (corresponding to Eq. (1)) is set
as

W ir
k =

{
1 x = xc, y = yc

0 x 6= xc, y 6= yc,
(6)

and the threshold θk of the matured mechanism (cor-
responding to Eq. (5)) is set as

θk = ε′ (7)

where ε′ is a small value.

From the graphs in Figure 5, we can see the ef-
fect of the developmental mechanisms in the learning
speed. The caregiver’s development has an ability to
accelerate the learning, although the robot’s devel-
opment has an effect to delay it. The visual develop-
ment of the robot means that the perceptual capabil-
ity of it is limited in the early stage and the middle
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Figure 5: The error transitions of four learning
models. The RC-dev. model is the proposed model
and the R-dev. model, the C-dev. model, and the ma-
tured model denote a model which has only robot’s de-
velopment, which has only caregiver’s one, and which
does not have any development, respectively.

one of the learning process. Because of its limitation,
the learning with the robot’s development is slowed
down during these stages. On the other hand, the
caregiver’s development prompts the robot to learn
the task, because it shifts the task level from easy
to difficult one according to the learning progress by
controlling the reward area.

4.3 Evaluation of The Final Task Perfor-
mance

Experiments of joint attention were conducted with
the neural network learned by the proposed develop-
mental learning model. It was tested that the robot
could identify the object which was set to a different
point from the learned one by the caregiver. Through
this experiment, it was confirmed that the robot was
successful in joint attention task more than 90% of
the trial.

Then, the final task performance of the proposed
model was compared with the three models: the R-
dev. model, the C-dev. model, and the matured
model. The output errors of the neural networks
learned by the each model to unknown inputs were
measured. Figure 6 shows the normalized output
errors in the pan direction, the tilt one, and the av-
erage and their standard deviations of the four mod-
els. This result indicated that the RC-dev. model
(the proposed model) has higher final task perfor-
mance than other models because its output error
is smaller than others. Both the robot’s develop-
ment and the caregiver’s one have capabilities to im-
prove the final task performance, and the capabil-
ity of the robot’s development is greater than that
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viations to unknown inputs

of the caregiver’s one. It is supposed that a learn-
ing model with the robot’s development, that is the
visual development, could acquire generalized task
performance, because the blurred retina image in the
early stage of the learning enabled the robot to un-
derstand the abstract meaning of the joint attention
task (input/output relationships).

Next, the information extractions on the visual
cortex layer in the neural network learned by the pro-
posed model were investigated to verify the general-
ized task performance described above. Figure 7
shows the responses of the visual cortex neurons to
various input images. This distribution indicates
that the visual cortex neurons of No.1 and No.6 es-
timate the vertical direction of the caregiver’s at-
tention (shown in Figure 7 (a)), and No.8 and No.9
estimate the horizontal one (shown in (b)). From
these examination results, it is confirmed that the
neural network learned by the proposed developmen-
tal learning model has acquired the response selec-
tivity to the change of the direction of the caregiver’s
attention.

5 Conclusion

This paper presented the developmental learning
model for joint attention between the robot and
the caregiver. The proposed model has two de-
velopmental mechanisms: the robot’s development
and the caregiver’s one. The robot’s development
means that the sensing (the visual) capability of
the robot change from immaturity to maturity, and
the caregiver’s development means that the caregiver
changes the task evaluation from easy situation to
difficult one by controlling the tolerance of the out-
put error. These two developments are caused by the
learning progress of the robot. The experimental re-
sults showed that the caregiver’s development accel-
erated the learning and the robot’s development im-
proved the final task performance. Therefore, we can
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Figure 7: The responses of the visual cortex neurons
to various input images

conclude that the proposed model which has both the
robot’s development and the caregiver’s one has the
best capabilities.

Above effects which the robot’s development and
the caregiver’s one brought the learning should be
analyzed in detail, and it should be made clear how
the developmental mechanisms made these effects.
In addition, the acquired ability of joint attention
by the proposed model is that the robot does not
act with understanding the meaning of the atten-
tion but reacts to the visual inputs of the caregiver’s
face reflexively. The learning model for the robot
should be added a mechanism to acquire the meaning
of the attention through the experiences of joint at-
tention and understand triadic representation among
the robot, the caregiver, and an object.
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