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Abstract

The conventional reinforcement learning approaches
have difficulties in handling the policy alternation of
the opponents because it may cause dynamic changes
of state tramsition probabilities of which stability is
necessary for the learning to converge. A multiple
learning module approach would provide one solution
for this problem. If we can assign multiple learn-
ing modules to different situations in which the each
module can regard the state transition probabilities
as consistent, then the system would provide reason-
able performance. This paper presents a method of
multi-module reinforcement learning in a multiagent
environment, by which the learning agent can adapt
its behaviors to the situations as results of the other
agent’s behaviors. We show a preliminary result of
a simple soccer situation.

1 Introduction

There have been an increasing number of approaches
to robot behavior acquisition based on reinforce-
ment learning methods [1, 2]. The conventional ap-
proaches need an assumption that the environment is
almost fixed or changing slowly so that the learning
agent can regard the state transition probabilities as
consistent during its learning. Therefore, it seems
difficult to apply the reinforcement learning method
to a multiagent system because a policy alteration
of the other agents may occur, which dynamically
changes the state transition probabilities from the
viewpoint of the learning agent.

There are a number of works on reinforcement learn-
ing systems in a multiagent environment. Asada et
al. [3] proposed a method which estimates the state
vectors representing the relationship between the
learner’s behavior and those of other agents in the
environment using a technique from system identifi-
cation, then reinforcement learning based on the es-
timated state vectors is applied to obtain the coopo-
rative behavior. However, this method requires a

global learning schedule in which only one agent is
specified as a learner and the rest of agents have a
fixed policies. Therefore, the method cannot han-
dle the alternative of the opponents policies. This
problem happens because one learning module can
maintain only one policy.

A multiple learning module approach would provide
one solution for this problem. If we can assign multi-
ple learning modules to different situations in which
the each module can regard the state transition prob-
abilities as consistent, then the system would provide
reasonable performance.

Singh [4, 5] has proposed compositional Q-learning
in which an agent learns multiple sequential deci-
sion tasks with multi learning modules. Each module
learns its own elemental task while the system has a
gating module for the sequential task, and this mod-
ule learns to select one of the elemental task mod-
ules. Takahashi and Asada [6] proposed a method by
which a hierarchical structure for behavior learning
is self-organized. The modules in the lower networks
are organized as experts to move to different cate-
gories of sensor value regions and learn lower level
behaviors using motor commands. In the meantime,
the modules in the higher networks are organized as
experts which learn higher level behavior using lower
modules. Each module assigns its own goal state by
itself. However, there are no such measure to iden-
tify the situation that the agent can change modules
corresponding to the current situation.

Sutton [7] has proposed DYNA-architectures which
integrate world model learning and execution-time
planning. Singh [8] has proposed a method of learn-
ing a hierarchy of models of the DYNA-architectures.
The world model is not for the identification of the
situations, but only for improving the scalability of
reinforcement learning algorithms.

Doya et al. [9] have proposed MOdular Selection
and Identification for Control (MOSAIC), which is a

modular reinforcement learning architecture for non-



linear, non-stationary control tasks. The basic idea is
to decompose a complex task into multiple domains
in space and time based on the predictability of the
environmental dynamics. Each module has a state
prediction model and a reinforcement learning con-
troller. The models have limited capabilities of state
prediction as linear predictors, therefore the multiple
prediction models are required for a non-linear task.
A domain is specified as a region in which one linear
predictor can estimate sensor outputs based on its
own prediction capability. The responsibility signal
is defined by a function of the prediction errors, and
the signals of the modules define the outputs of the
reinforcement learning controllers.

We adopt the basic idea of combination of a forward
model and a reinforcement learning into an architec-
ture of behavior acquisition in the multi-agent en-
vironment. In this paper, we propose a method by
which multiple modules are assigned to different situ-
ations and learn purposive behaviors for the specified
situations as results of the other agent’s behaviors.
We show a preliminary result of a simple soccer sit-
uation.

2 A Basic Idea and An Assumption

The basic idea is that the learning agent could assign
one reinforcement learning module to each situation
which is caused by the other agents and the learning
module would acquire a purposive behavior under
the situation if the agent can distinguish a number
of situations in which the state transition probabili-
ties are consistent. We introduce a multiple learning
module approach to realize this idea. A module con-
sists of learning component which models the world
and an execution-time planning one. The whole sys-
tem performs these procedure simultaneously.

e find a model which represents the best estima-
tion among the modules,

e calculate action values to accomplish a given
task based on dynamic programming (DP).

As a preliminary experiment, we prepare a case of
ball chasing behavior with collision avoidance. In the
environment there are a learning agent, a ball, and
an opponent which moves at random. The problem
here is to find the model which can most accurately
describe the opponent’s behavior from the view point
of the learning agent and to execute the policy which
is calculated under the estimated model. It may take
a time to distinguish the situation, therefore, we put
an assumption.

e The policy of the opponent might change after
a fixed period.

3 A Multi-Module Learning System
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Figure 1: A multi-module learning system

Figure 1 shows a basic architecture of the proposed
system, that is, a multi-module reinforcement learn-
ing one. Each module has a forward model (predic-
tor) which represents the state transition model, and
a behavior learner (policy planner) which estimates
the state-action value function based on the forward
model in the reinforcement learning manner. This
idea of combination of a forward model and a rein-
forcement learning system is similar to the H-DYNA
architecture [8] or MOSAIC [9]. In other words, we
extend such architectures to an application of behav-
ior acquisition in the multi-agent environment.

The system selects one module which has the best es-
timation of the state transition sequence by activat-
ing a gate signal corresponding to a module and by
deactivating the gate signals of other modules, and
the selected module sends action commands based
on its policy.

3.1 Predictor

In this experiment, the agent recognizes a ball and
the opponent in the environment. The state space
of the planner consists of features of all objects in
order to calculate state value (discounted sum of the
reward received over time) for each pair of a state and
an action. However, it is impractical to maintain a
full size state transition model for real robot applica-
tions because the size of state-action space becomes
easily huge and it is really rare to experience all state
transitions within the reasonable learning time.

In general, the motion of the ball depends on the
opponent because there are interactions between the
ball and the opponent. However, the proportion of
the interaction time is much shorter than that of non-
interaction time. Therefore, we assume that the ball
motion is independent from the opponent. Further,
we assume that the opponent motion from the view-
point of the agent seems independent from the ball
positions and to depend only on the learning agent’s



behavior even if the opponent’s decision may depend
on the ball. If the system maintains the forward
models of the ball and the opponent separately, each
model can be much more compact and it is easy to
experience almost all state transition within reason-
able learning time.

As mentioned above, the module has two forward
models for the ball and the opponents. We estimate
the state transition probability 75;15, for the triplet of
state s, action a, and next state s’ using the following
equation:

PL, = Piloy - Ploy (1)

where the state s € S is a combination of two states
in the ball state space % € %S and the opponent state
space % € 95. The system has not only the state
transition model but also a reward model 7@‘;8,.

We simply store all experiences (state-action-next
state sequences) to estimate these models. Accord-
ing to the assumption mentioned in 2, we share the
state transition models of the ball and the reward
model among the modules, and each module has its
own opponent model. This leads further compact
model representation.

3.2 Planner

Now we have the estimated state transition proba-
bilities Pg,, and the expected rewards RY,,, then, an
approximated state-action value function Q(s,a) for

a state action pair s and a is given by

Qs,a) = Y Pey [Rey +ymaxQ(s'a)] . (2)

where P2, and R?, are the state-transition proba-

bilities and expected rewards, respectively, and the
v is the discount rate.

3.3 Gating Signals

The basic idea of gating signals is similar to Tani and
Nolfi’s work [10] and the MOSAIC architecture [9].
The gating signal of the module becomes larger if the
module does better state transition prediction during
a certain period, else it becomes smaller. We assume
that the module which does best state transition pre-
diction has the best policy against the current situ-
ation because the planner of the module is based on
the model which describes the situation best. In our
proposed architecture, the gating signal is used for
gating the action outputs from modules. We calcu-
late the gating signals g; of the module i as follows:

gi = H t

Apt
t=—T+1 Zj e s

i

where p; is the occurrence probability of the state
transition from the previous (¢ — 1) state to the cur-
rent (t) one according to the model ¢, and the A is a
scaling factor.

4 Experiments

We have studied preliminary experiments so far. The
task of the learning agent is to catch the ball while
it avoids the collision with the opponent.

4.1 Setting

—

Figure 2: Robot

Figure 2 shows the mobile robot we have designed
and built. The robot has an omni-directional cam-
era system. A simple color image processing (Hitachi
IP5000) is applied to detect the ball area and an op-
ponent one in the image in real-time (every 33ms).
Figure 3 (a) shows a situation which the learning
agent can encounter and Figure 3 (b) shows the sim-
ulated image of the camera with the omni-directional
mirror mounted on the robot. The larger box indi-
cates the opponent and the smaller one indicates the
ball.

The state space is constructed in terms of the cen-
troid of the ball and the opponent on the image (Fig-
ure 4 (a)). The driving mechanism is PWS (Power
Wheeled Steering) system, and the action space is
constructed in terms of two torque values to be sent
to two motors corresponding to two wheels (Figure 4
(b)). These parameters of the robot system are un-
known to the robot, and it tries to estimate the map-
ping from sensory information to appropriate motor
commands by the method.

The opponent has a number of behaviors such as
“stop”, “move left”, and “move right”, and switch
them randomly after a fixed period. The learning
agent has models to those behaviors of the oppo-
nents. The learning agent behaves randomly while it
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Figure 3: Simulation Environment

gathers the data of the ball and the opponent image
positions and builds up models for them.

4.2 Simulation Result

Table 1: Comparison of the success rates between
the agent with multi-module system and one with
one-module system

system success rate
multi-module 61 %
one-module 50 %

We have applied the method to a learning agent and
compared it with only one learning module. Table
1 shows the success rates of these two system after
the learning. The success indicates that the learn-
ing agent successfully caught the ball with collision
avoidance while the opponent moved randomly. The
success rate indicates the number of successes in one
hundred trials. The multi-module system shows bet-
ter performance than the one-module system. Figure
5 shows an example sequence of the behavior when
the agent executes its learned policy and the oppo-
nent behaves randomly after a fixed period. Fig-
ure 6 shows an example sequence of the gating sig-
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Figure 4: State-action space

nal (the opponent’s behavior estimation) in the se-
quence. The arrows and alphabet indexes at the bot-
tom correspond to the indexes of the figure 5. The
agent seems to fail to estimate the opponent’s be-
havior at the beginning and end periods, however, it
accomplishes the given task. This means that even
if the agent fails to estimates the other agent’s be-
havior, there is no problem in some situations where
the learning agents policy does not depend on the
other agent’s behavior. For example, the opponent’s
behavior does not depend on the agent’s behavior
when the ball is near and the opponent is far from
the agent. In such a case, the agent does not have to
estimate the other’s behaviors correctly.

5 Conclusion and Future Work

In this paper, we proposed a method by which multi-
ple modules are assigned to different situations which
are caused by the alternation of the other agent pol-
icy and learn purposive behaviors for the specified
situations as results of the other agent’s behaviors.
We have shown a preliminary result of a simple soc-
cer situation.

Currently, we have a fixed number of learning mod-
ules and assigned modules to specific situations. As
a future work, we are planning to develop a mecha-
nism of self module assignment. We expect we can
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Figure 5: A sequence of a chasing behavior

apply similar approach to the simultaneous learning
problem in multi-agent system.
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