SELF-CONSTRUCTION OF STATE SPACES OF SINGLE
AND MULTI-LAYERED LEARNING SYSTEMS FOR
VISION-BASED BEHAVIOR ACQUISITION OF A REAL
MOBILE ROBOT

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF
MECHANICAL ENGINEERING FOR COMPUTER-CONTROLLED MACHINERY FACLTY
OF ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF OSAKA UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Yasutake Takahashi
January 2002



(© Copyright 2002
by
Yasutake Takahashi

i



Minoru Asada
(Principal Adviser)

Yoshiaki Shirai
(Dept. of Computer-Controlled Mechanical Systems,

Graduate School of Engineering, Osaka University)

Tadahiro Kitahashi
(The Institute of Scientific and Industrial Research, Osaka University)

Approved for the University Committee on Graduate
Studies:

Dean of Graduate Studies & Research

1ii






Preface

This thesis tells you all you need to know about almost works in which Yasutake Taka-
hashi has engaged from 1994 to 2001. These works aim at building an autonomous
robot which is able to develop its knowledge and behaviors from low level to higher
one through the interaction with the environment in its life.






Acknowledgments

I would like to thank my adviser, Professor Minoru Asada for his support, his patient
guidance, and constant encouragement throughout this work. I would like to thank
all members of laboratory for their helpful assistance and discussion. I would like
to thank my family, especially my parents Minoru and Hiroko for all their love,
understanding, and patience.

vil






Contents

Preface v
Acknowledgments vii
1 Introduction 1
1.1  Autonomous Mobile Robot In the Real World . . . . . ... .. ... 1
1.2 TIssues of Applying RL to the Real Robots . . . . ... .. ... ... 4
1.3 State and Action Space Construction . . . . . . . .. ... ... ... 5
1.3.1 Spaces for A Single Learning Module System . . . . . . . . .. 6
1.3.2  Spaces for Multi-Layered Modules Architecture . . . . . . .. 7
1.4 The objective of the dissertation . . . . . . . . . . ... ... ... .. 8
1.5 The organization of the following chapters . . . . . . ... ... ... 8
2 Related Works 9
2.1 Low Level State Space Construction. . . . . . . ... .. ... .... 9
2.1.1 Selection of sensor information . . . . . .. ... ... .. ... 10
2.1.2  Sensor Space Segmentation . . . . . ... ... ... 10
2.2 Multi-Module based Reinforcement Learning . . . . . . . . .. .. .. 12
2.3 Reuse of Acquired Knowledges . . . . . . . ... .. ... ... ... 14
2.4 Hierarchical Control Structure . . . . . . .. .. ... ... ... ... 15

3 State Space Construction by Incremental Sensor Space Segmenta-
tion for Vision based Behavior Acquisition 19
3.1 Introduction . . . . . . . . . ... 19
3.2 Basics of Reinforcement Learning . . . . . . ... ... ... .. ... 20
3.3 Self-Segmentation of Continuous State Space . . . . . . . . ... ... 20
3.4 Algorithm . . . . . . . . . 21
3.5 Action Space and Data Structure . . . . . . .. ... ... ... ... 21
3.6 Local Model Construction . . . .. .. ... ... ... .. ...... 23

1X



3.7 Composite of the Segmented Sensor Spaces by A Number of Action

Primitives . . . . . . .. 24
3.8 Sensor Space Segmentation Based on Reward Distribution . . . . . . 25
3.9 Composite of the Segmented Sensor Spaces . . . . . . . ... .. ... 25
3.10 Action Generation . . . . . . .. ... ... 26
3.11 Reuse of the Knowledge Obtained by Experiences . . . . . . . . . .. 26
3.12 Experiments . . . . . ... 27

3.12.1 Task and Assumptions . . . . . . . . .. ... ... ... ... 27

3.12.2 Simulation . . . . . ... 29

3.12.3 Experiment on the Real Robot . . . . .. ... ... ... .. 37
3.13 Conclusion and Future Works . . . . . . .. ... ... .. ... ... 42
3.14 Appendix : Extraction of Feature Vector from Multi-dimensional Sen-

SOT SPACE . « v v v e e e e e e 42
Behavior Acquisition by Multi-Layered Reinforcement Learning 45
4.1 Introduction . . . . . . . ... 45
4.2 Multi-Layered Learning System . . . . . .. ... ... ... ..... 46

4.2.1 Architecture . . . . . . ... 46

4.2.2 Continuous Q learning . . . . . . .. .. ... 48

4.2.3 State and Action Space Construction . . . . . . . . ... ... 49

4.2.4 Self-distribution of Goal State . . . . . . . ... ... .. ... 49

4.2.5 Construction of Layer . . . . . . .. ... ... ... ..... 53

4.2.6  Strategy in the Multi-Layered Learning System to Accomplish

ATask . . . ... . 53
4.3 Experiments . . . . . . ..o 54

4.3.1 Overview . . . . ... 54

4.3.2 Experiment Results . . . . ... ... ... ... ... 56

4.3.3 Appendix : sequence of learning module distribution . . . . . 61
4.4 Conclusion . . . . . . . . . 88

State-Action Space Construction for Multi-Layered Learning Sys-

tem
5.1
5.2
5.3

5.4
5.9

89
Introduction . . . . . .. ..o 89
Multi-Layered Learning System . . . . . .. ... ... ... .. ... 90
State-Action Space Construction based on Lower Learning Modules . 91
5.3.1 Multiplicative Approach . . . . . ... ... ... ... .... 92
5.3.2 Complementary Approach . . . . . . ... ... ... ..... 93
Strategy in the Multi-Layered Learning System to Accomplish A Task 94
Simulation Experiments . . . . . ... ... ... L. 97



55.1 An Overview . . . . . . . . 97

5.5.2  Results (1: Navigation) . . . . . . ... ... ... ... .... 99

5.5.3 Result (2: Shooting Behavior) . . . ... ... ... ... ... 102

5.6 Real Robot Experiments . . . . . . . ... . ... ... ... ..... 104
5.6.1 An Overview . . . . . . . . 104

5.6.2 Results. . . . . . . .. 106

5.6.3 Discussion . . . . . . ... 108

5.7 DiIscussions . . . . . ... 110

6 Conclusions and Future Works 115

x1






List of Tables

3.1  Weights of Goal Vectors by Principal Component Analysis . . . . . . 44
5.1 Required memory size for the proposed layered learning system . . . 109
5.2 Required memory size for the layered learning system with monolithic

state and action spaces . . . . . .. ... Lo 109

xiil






List of Figures

1.1
1.2
3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18
3.19
3.20
4.1
4.2

a basic model of agent-environment interaction . . . . . . . .. . . ..
The inter-dependence between the state and action spaces . . . . . .
The rough flow of the proposed method . . . . . . . .. .. ... ...
The construction of local model and the segmentation of sensor space
Example of composite State Space based on segmented sensor spaces
by two action primitives . . . . . ... ...
Recalculation of Q value . . . . . . .. . ... ... ... ... . ...
A task and our real robot . . . .. ..o
The success rate and the number of states . . . . . ... .. ... ..
Result of state space construction . . . . . .. ... ... ... ....
Some kinds of behaviors during learning process . . . . . . .. .. ..
Success rate and the number of states in the case that environment
change one the way . . . . . . . . ... .. ... ... ...
Success rate with different rates of optimal action . . . . . . . . . ..
Number of states with different rate of optimal action . . . . . . . ..
Success rate with two kinds of fitting thresholds . . . . . . .. . . ..
Number of states with two kinds fitting thresholds . . . . . . . . . ..
Change of the state space segmentation . . . . . . . .. .. ... ...
A configuration of the real robot . . . . . . . ... ... ... ... ..
Detection of the ball and the goal . . . . . . .. ... ... ... ...
An example of linear model fitting : the data is obtained while the
robot gets a forward action primitive. . . . . . ... ...
state space construction of real robot experiment . . . . . ... . ..
The robot succeeded in shooting a ball into the goal . . . . . . . . ..
Contributing rate of principal component . . . . . . . . .. ... ...
A hierarchical learning architecture . . . . . . . . ... .. ... ...
State Value V(s) represents how close the agent is to the goal.

49

4.3 An example of the assignment of the goal state among learning modules 51

XV



4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

Strategy in the multi-layered control structure (L.M. stands for learn-
ing module). . . . . ...
A mobile robot, a ball and goals . . . . . ... ... ... ... ....
An overview of the robot system . . . . . . .. ... ... ... ...
A hierarchical architecture of learning modules . . . . . . . . .. ...
The distribution of learning modules at bottom layer on the normal
CaMera IMAaZE . . . . . . v v v v e e e e
The distribution of learning modules at bottom layer on the omni-
directional camera image . . . . . . . . ...
A sequence of the goal state activation and behavior activation of learn-
ing modules at each layer . . . . . . ... ... 0L

59

A rough sketch of the state transition on the multi-layer learning system 60
The distribution of learning modules at bottom layer (1000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

61

The distribution of learning modules at bottom layer (2000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

62

The distribution of learning modules at bottom layer (3000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

63

The distribution of learning modules at bottom layer (4000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

64

The distribution of learning modules at bottom layer (5000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

65

The distribution of learning modules at bottom layer (6000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

66

The distribution of learning modules at bottom layer (7000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

67

The distribution of learning modules at bottom layer (8000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .

68

The distribution of learning modules at bottom layer (9000step): TOP:perspective

camera image, BOTTOM:omni-directional camera image . . . . . . .
The distribution of learning modules at bottom layer (10000 step):
TOP:perspective camera image, BOTTOM:omni-directional camera
mage . . . . ..
The distribution of learning modules at bottom layer (20000 step):
TOP:perspective camera image, BOTTOM:omni-directional camera
Image . . . . .. e
The distribution of learning modules at bottom layer (30000 step):
TOP:perspective camera image, BOTTOM:omni-directional camera
image . . ...

Xvi

69

70

71

72



4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

The distribution
TOP:perspective
image
The distribution
TOP:perspective
image
The distribution
TOP:perspective
image
The distribution
TOP:perspective
image
The distribution
TOP:perspective
image
The distribution
TOP:perspective
image

of learning modules at bottom layer (40000 step):
camera image, BOTTOM:omni-directional camera

of learning modules at bottom layer (50000 step):
camera image, BOTTOM:omni-directional camera

of learning modules at bottom layer (60000 step):
camera image, BOTTOM:omni-directional camera

of learning modules at bottom layer (70000 step):
camera image, BOTTOM:omni-directional camera

of learning modules at bottom layer (80000 step):
camera image, BOTTOM:omni-directional camera

of learning modules at bottom layer (90000 step):
camera image, BOTTOM:omni-directional camera

The distribution of learning modules at bottom layer (100000 step):

TOP:perspective
image

camera image, BOTTOM:omni-directional camera

The distribution of learning modules at bottom layer (200000 step):

TOP:perspective
image

camera image, BOTTOM:omni-directional camera

The distribution of learning modules at bottom layer (300000 step):

TOP:perspective
image

camera image, BOTTOM:omni-directional camera

The distribution of learning modules at bottom layer (400000 step):

TOP:perspective
image

camera image, BOTTOM:omni-directional camera

The distribution of learning modules at bottom layer (500000 step):

TOP:perspective
image

camera image, BOTTOM:omni-directional camera

The distribution of learning modules at bottom layer (600000 step):

TOP:perspective
image

camera image, BOTTOM:omni-directional camera

The distribution of learning modules at bottom layer (700000 step):

TOP:perspective
image

camera image, BOTTOM:omni-directional camera

73

74

75

76

77

78

79

30

81

82

83

84



4.37 The distribution of learning modules at bottom layer (800000 step):
TOP:perspective camera image, BOTTOM:omni-directional camera
IMage . . . . ..o e 86

4.38 The distribution of learning modules at bottom layer (900000 step):
TOP:perspective camera image, BOTTOM:omni-directional camera

IMAGe . . . o oo 87
5.1 An overview of a hierarchical learning architecture (LM stands for
learning module). . . . .. ..o Lo 90
5.2 The relationships of situations and behaviors inside a layer and between
different levels . . . . . . . . .o o 90
5.3 State-action space construction based on multiplicative approach . . . 92
5.4 State-action space construction based on complementary approach . . 93
5.5 The strategy in the multi-layered control structure. . . . . . . . . .. 94
5.6 A mobile robot, a ball, and a goal . . . . ... ... ... ... .... 97
5.7 A hierarchical architecture of learning modules . . . . . . . . . .. .. 98
5.8 A simulation environment . . . . . .. .. ..o 99
5.9 Goal state activation of modules at lower layer (ball) (navigation) . . 100
5.10 Goal state activation of modules at lower layer (goal) (navigation) . . 100
5.11 Goal state activation of modules at higher layer (navigation) . . . . . 101
5.12 Learned policy following rate (navigation) . . . . .. ... ... ... 101
5.13 Goal state activation of modules at lower layer (ball) (shooting) . . . 103
5.14 Goal state activation of modules at lower layer (goal) (shooting) . . . 103
5.15 The following rate of the learned policy (shooting) . . . . . . .. . .. 104
5.16 A mobile robot, a ball and a goal . . . . ... ... ... ... ... 105
5.17 An overview of the robot system . . . . . . . .. ... ... ... .. 106
5.18 A hierarchy architecture of learning modules . . . . . . .. . ... .. 107
5.19 A sequence of a shooting behavior and its camera images . . . . . . . 111
5.20 A sequence of the goal state activation and behavior activation of learn-
ingmodules . . . . ... 112
5.21 A sequence of the behavior activation of learning modules and the
commands to the lower layer modules . . . . . ... ... ... . ... 113

xXviil



Chapter 1

Introduction

In this chapter, a brief overview of conventional approaches to behavior acquisitions
for autonomous robots is given in order to make clear the purpose of this dissertation.

1.1 Autonomous Mobile Robot In the Real World

There are a lot of works on development of autonomous mobile robots in the real
world. The given tasks and the environments around the mobile robots are various
such as map building, objects delivering, navigation in the office room, under water,
desert area, and so on. Many approaches are also proposed to design robot behavior
to control robot motions and/or to improve them.

The conventional approaches require the robots to accomplish specific tasks. The
purposes of their works are to acquire a certain behavior automatically, or to improve
its efficiency. However, the demands for the autonomous robots would be increasing,
or changed after the behavior developments. Therefore, the robots are expected to
require much more adaptability to work in the dynamically changing real worlds.

In order to develop a autonomous robot, usually human designers write programs
of behaviors for a robot in advance based on their own experiences and insights. Gen-
erally speaking, the monolithic, deliberative behavior controller needs a complicated
environment-robot system model, large computational resources to derive a solution,
and careful attention to its maintenance. It is also difficult to be robust against break-
downs of the mechanical devices or changes of the environment because of its lack of a
adaptation capability. Even though human designers are able to adjust parameters of
the behaviors, it is really hard and time consuming because the number of parameters
tends to be easily huge, the parameters have complex relationships with each other,



2 CHAPTER 1.

and it is almost impossible to know the characteristics of the whole system and/or to
predict all kinds of changes in the environment. Therefore, autonomous robots need
learning capability when various kinds of tasks are given, not only in the familiar
environments but also in newly encountered ones.

One of the main concern about autonomous robots is how to implement a system
with learning capability to acquire both a variety of knowledge and behaviors through
the interaction between the robot and the environment during its life time. There have
been a lot of works on learning approaches for robots to acquire behaviors based on
the methods such as reinforcement learning, genetic algorithms, and so on. However,
direct applications of these methods have still limitations to cope with change in the
tasks/environment.

The objective of our study is to cope with such limitations by acquiring both
knowledge and behaviors through the interaction between the robot and the envi-
ronment, within a reasonable learning time, with human designer’s help as little as
possible.  'We have realized our ideas and applied them to the real robot on the
RoboCup as test-bed to evaluate our systems.

The Robot World Cup Soccer Games and Conferences (RoboCup) are a series of
competitions and events designed to promote the full integration of Al and robotics
researches. The robotic soccer provides a good test-bed for evaluation of various kinds
of research disciplines, e.g. artificial intelligence, robotics, image processing, system
engineerings, multi agent systems, and so on. Reactive and adaptive behaviors of
robots are required in a dynamic and hostile environment which is one of the most
important characteristics provided by RoboCup competitions.

There are two major approaches related to our research. One is so-called behavior-
based architecture approach, and the other is machine learning one. We briefly review
them.

A Behavior-Based Architecture

Brooks [10] proposed a behavior-based architecture, called “subsumption architec-
ture”, which is a kind of layered control system. Layers consist of asynchronous
modules, each of which is a fairly simple behavior controller. The higher layers can
subsume the lower behaviors by suppressing their outputs. The simplicity of each
control module makes its development and maintenance easy, and leads the whole
system to be flexible and robust. His group invented several kinds of behavior-based
robots [11].

The simplicity of control modules also means that they have the capability of
reactive behaviors. They do not need enormous computational resources (memory
and processing power) to generate adequate behaviors. This property is the most



SECTION 1.1. 3

important one in order to develop real autonomous robots. However, we still need a
capability of a purposive behavior acquisition of each module, and the design principle
of the hierarchy system.

Machine Learning Approach

In the machine learning area, several approaches have tried to make agents learn
purposive behaviors autonomously to achieve their goals through agent-environment
interactions. Especially, reinforcement learning has recently been receiving increased
attention as a method for behavior learning with little or no a priori knowledge and
higher capability of reactive and adaptive behaviors [15].

Figure 1.1: a basic model of agent-environment interaction

Figure 1.1 shows a basic model of reinforcement learning. We assume that the
agent can discriminate a set S of distinct world states, and can take an action from an
action set A. The world is modeled as a Markov process, making stochastic transitions
based on its current state and the action taken by the agent. For each state-action
pair (s,a), the reward r(s,a) is defined. The general reinforcement learning problem
is typically stated as finding a policy that maximizes the discounted sum of the reward
received over time. Watkins’ ()-learning algorithm [14] gives us an elegant method to
do this.



4 CHAPTER 1.

However, the applications of conventional approaches based on machine learning
methods seem limited, such as the navigation on the grid world ([71, 74, 73]), object
manipulation in a toy world ([72]), and the traditional control domain like car-on-the-
hill ([9, 60, 61]), pole balancing (Pendulum Swing Up) ([61, 20, 21, 8, 48]), while only
a small number of real mobile robot applications have been reported which are simple
and less dynamic [15]. The concept of reinforcement learning would be meaningful if
it could be applied to more complex tasks in a real environment.

1.2 Issues of Applying RL to the Real Robots

There are a number of advantages in applying reinforcement learning methods in
order to develop an autonomous robot (ex. [7, 4]). However, they have also one
critical disadvantage, that is the lack of the scalability.

Since the reinforcement learning generally begins to updates the action values
from the state given the reinforcement, the experiences before the reinforcement is
given or far from the states where the reinforcements are given might be vain. This
leads the learning system to take enormous time to have adequate experiences to
acquire a purposive behavior over large state and action spaces. Whitehead [71] has
theoretically shown that learning converges very slowly with such infrequent rewards;
the search time scales at least exponentially in the step size to reach the goal state
from start one in the state space. This theoretical result has been also confirmed in
many experimental studies (ex.[43, 17, 41]).

There are two major approaches to solve the lack of scalability in applying rein-
forcement learning methods to real autonomous robots.

1. Keeping the state and action space small enough. Many experimental
studies show that the reinforcement learning system works very well with a
small state/action space. It is an easy solution to keep the state and action
spaces small enough to acquire a purposive behavior within reasonable learning
time.

However, the construction of the state and action spaces is also an important
issue in the reinforcement learning system. Even though we have already known
that the reinforcement learning system works based on the well defined state and
action spaces, it is really hard for human designers to construct such state and
action spaces in advance, especially in a scaled up, complex task/environment,
therefore the robot should find the adequate state/action space by itself.

2. Introduction of hierarchy and multi-module architecture. In order to
realize an autonomous robot which acquires various behaviors by itself in real



SECTION 1.3. 5

world, it is necessary to be able to manage a wide range of state and action
variables according to situations, to keep the spaces as small as possible, and
to learn/control behaviors based on the small state and action spaces.

It is almost impossible or impractical that robot acquires the various behaviors
for the given tasks based on a huge monolithic state/action space which con-
sists of all kinds of sensory information and actuator commands, because the
computational resources are limited and learning time is not eternity from a
practical viewpoint.

Fortunately, almost long time-scale behavior may be generally decomposed into
some simple behaviors so that the searching space could be divided into some
smaller ones. Connel and Mahadevan [34, 33, 16] decomposed the whole behav-
ior into sub-behaviors each of which can be independently learned. However,
task decomposition and behavior switching are designed by the human pro-
grammers.

Above two approaches have dependence between them. A multi-module architecture
enables the system to decompose a large state-action space into small subspaces, based
on which the reinforcement learning system can generate purposive behaviors within
reasonable learning time. On the other hand, the state and action space of higher
level learning modules can be small because it would consist of abstracted states and
actions based on the already learned control modules on the lower levels. In this
thesis, we put focus on the self-construction of state space of single and multi-layered
learning systems.

1.3 State and Action Space Construction

Generally, the state and action spaces are dependent on each other. That is, the
design of the state space in which necessary and sufficient information to accomplish
a given task is included depends on the capability of agent actions. On the other
hand, the design of the action space also depends on the capability of perception.
This resembles the well-known “chicken and egg problem” that is difficult to be solved
(see Figure 1.2).

There are two major problems in the construction of the state space.

1. Selection of the information to represent a state of the agent and its environ-
ment, and to take an action against the state

2. Definition of state/action based on the selected information



6 CHAPTER 1.

State Space Actioq Space

Figure 1.2: The inter-dependence between the state and action spaces

In the following, we explain these problems in more detail in the cases of single and
multi-layered learning systems.

1.3.1 Spaces for A Single Learning Module System

Almost works about the state and action space construction are based on sensory
information and actuator commands equipped on the robot. In a case of the single
learning module system, there are following two major problems in the construction
of the state space.

1. Tt is difficult to select the sensory information to represent the state of robots
and their environment. If one uses all the sensory information, the amount
of the data the robot has to deal with would easily exceed the capability of
the robot (memory and processing power). This is called “curse of dimension”
problem. This means that the computational cost must increase exponentially
with the dimension of the search space.

2. Even though the sensor information is well selected for the given task, the
segmentation problem remains. The state space designed by the programmer is
not guaranteed as an optimal one for the robot to perform the task. The coarse
segmentation causes so-called “perceptual aliasing problem” [72] by which the
robot cannot discriminate the states important to accomplish the given task. On
the other hand, the fine segmentation to avoid the perceptual aliasing problem
produces too many states to generalize the experiences. Further, the robot needs
an enormous amount of learning time since it increases exponentially with the
size of the state space.

A simple and straightforward method to handle the above problem is to gather
many data of the interactions between the environment and itself, to selects the
information related to the given task, and then to quantize this space in a certain
way. However, this approach seems limited because the robot has to have all kinds



SECTION 1.3. 7

of experiences in the environment before the it tries to execute the given task. One
alternative to avoid such a limitation is an adaptive, online construction of the state
and action spaces in applying reinforcement learning methods to real autonomous
robots.

1.3.2 Spaces for Multi-Layered Modules Architecture

Another approach to the problem of the curse of dimension and the perceptual aliasing
is to adopt a hierarchical structure within leaning control system. That is, the system

1. prepares learning/control modules of one kind each of which deals with a sub-
space divided from a whole state/action space,

2. abstracts situations and behaviors based on the acquired learning/control mod-
ules, and

3. acquires higher level, new behaviors based on the state and action spaces which
is newly constructed from the abstracted situations and behaviors.

This approach can suppress the explosion of state and action spaces since the higher
level learning /control system manages adequately small size spaces already abstracted
in the lower levels.

The state and action space construction is also one of the important issues in the
multi-layered learning system. The system must construct a state/action space for
learning/controller modules of all layers based on the situations and the behaviors
constructed by the lower modules. The bottom layered modules have state and action
spaces based on the sensory information and motor commands. To the best of our
knowledge, there is no research on the construction of state and action spaces in the
multi-layered modules architecture.

In the multi-layered learning system area, there are following two major problems
in the construction of the state space.

1. Selection of the information from the lower learning modules to describe the
situation of the agent on the environment. Even though the lower modules
abstracted the situations and behaviors, information selection is still important
in order to construct a meaningful state space for the higher layer modules.

2. Definition of state based on the information of selected lower modules. It is
easily caught by a curse of dimension if the system combine the all kinds of
information as a set of their direct products.



8 CHAPTER 1.

1.4 The objective of the dissertation

The purpose of our study is to develop methods for an autonomous robot with learning
ability of knowledge and behaviors through the interaction between the robot and the
environment within a reasonable learning time with human designer’s help as little
as possible.

This dissertation shows ideas on the state and action space construction in the
single and multi-layered learning systems and the concrete models of the hierarchical
control system for an autonomous robot, and their verifications through the real robot
experiments.

1.5 The organization of the following chapters

This dissertation consists of six chapters including this one. In the next chapter,
we shows a survey of related works. In chapter 3, we propose a method of state
space construction for a single layered learning system. In chapter 4, we propose a
method by which a hierarchical structure for behavior learning is organized by itself.
In chapter 5, we propose an approach to the problem of decomposing the large state
space at the bottom level into several subspaces and to merge these subspaces at the
higher level. Finally, we conclude this study in chapter 6.



Chapter 2

Related Works

One of the main concern about autonomous robots is how to implement a system with
learning capability to acquire both a variety of knowledge and behaviors through the
interaction between the robot and the environment during its life time. There have
been a lot of works on learning approaches for robots to acquire behaviors based on
the methods such as reinforcement learning, genetic algorithms, and so on. Especially,
reinforcement learning has recently been receiving increased attention as a method
for behavior learning with little or no a priori knowledge and higher capability of
reactive and adaptive behaviors.

Since the lack of its scalability prevents the reinforcement learning approach from
being applied to real robot systems, many researchers have proposed several ap-
proaches to extend the scope of reinforcement learning applications. We categorize
them into four major approaches;

1. “state space construction for a single learning module”,
2. “multi-module based reinforcement learning”,
3. “reuse/re-adaptation of acquired knowledge”, and

4. “hierarchical control structure”.

In the following, we survey the areas related to the above.

2.1 Low Level State Space Construction

There are two major problems in applying reinforcement learning to real robot tasks.
One is a selection problem of the sensor information to represent the state of robots



10 CHAPTER 2.

and their environment, and the other is a problem of the state space segmentation.

2.1.1 Selection of sensor information

There are several methods for selection of sensory information. Whitehead and Bal-
lard [72] proposed a selection method of the sensor information to avoid the percep-
tual aliasing, called “lion algorithm”. The idea is that the overall decision system has
a perceptual subcycle to identify the situation in order to suppress the perceptual
aliasing. This system was applied to a simple block manipulation task in a computer
simulation.

Tan [63, 64] proposed a cost-sensitive learning method. The cost-effective sensing
features of the external world are selected in order to build a consistent internal state
representation. The method is demonstrated under a navigation task in a grid world.
Sensing a distant state needs more cost than sensing a nearby one.

Chapman and Kaelbling [13] proposed “G-algorithm” which recursively splits the
state space based on statistical measures of the differences in reinforcements received.
They applied their method to an action video game environment in which the sensory
information is described as one hundred of bits.

Munos [42] proposed a method to build a kind of decision tree according to some
reinforcement dissimilarity criterion. The sensory information are symbolized in ad-
vance, and the environment is a grid world in which the given task for the agent
is foraging for food with obstacle avoidance. Even though the perceptive capacities
are limited to the local area around the agent, it seems easy to obtain an adequate
policy because the foods are distributed aboundingly and the agent receives reward
frequently in this circumstance.

McCallum [36, 37, 35] proposed a method which uses selective attention and short-
term memory to deal with the sensor selection problem and hidden state one. The
method is applied to solve a highway driving task. The sensory information is sym-
bolized well.

The conventional approaches have dealt with the discrete state space, therefore,
these methods are difficult to be directly applied to a continuous state space in a real
world.

2.1.2 Sensor Space Segmentation

For the segmentation problem, roughly speaking, there are two approaches: learning
the value function with a method of function approximation or with segmentation of
continuous state space.



SECTION 2.1. 11

There are a number of studies of the former approach based on artificial neural
networks. Lin [29] has shown reinforcement learning methods based on neural net-
work; AHC-learning and QCON are based on TD(A) method and Q-learning one,
respectively. He applied those methods to the maze exploration problems.

Boyan and Moore [9] reported on the method for the function approximation that
the combination of dynamic programming and function approximation had shown
poor performances even for benign cases under several experiments such as a 2D grid
world, a puddle world, and a mountain car. Then, they proposed Grow-Support
algorithm for the function approximation. However, they need the environmental
model and assume a deterministic state transition on the world.

Sutton [60] has used a sparse, coarse-coded function approximator known as the
CMAC (Celebellar Model Articulation Controller) [2, 1] as a method of the function
approximation although CMAC has its own problem of quantization (segmentation),
He has shown the proposed method can learn the purposive behavior robustly on
the three continuous-state control problems studied by Boyan and Moore. Ono and
Fukumoto [44] have also applied the Q-learning and CMAC combination to the multi-
agent block pushing problem and shown a successful result.

Saito and Fukuda [46, 47] used CMAC to estimate the @) values, and applied it to
the two link robot brachiation system. However, the sensor space was huge and they
needed enormous learning time, therefore they reduced the searching space by using
the initial controller.

As a method for state space segmentation, Krose and Dam [32], Dubrawski and
Reignier [23], and Sato et al. [49] used only reinforcement signal to divide the state
space, therefore the space far from the states given the reinforcement signal have not
been segmented.

Moore [39] proposed Variable Resolution Dynamic Programming, which produces
a partitioning with high resolution only in important regions. This is one kind of
off-line dynamic programming methods. It calculates a mental trajectory using the
prepared forward model, and quantizes the area of the state space in which the
trajectory passed over with highest resolution, under the assumption which is that
those states encountered during mental practice are particularly important to know
about detail. However, the system does not consider how fine the resolution should
be. It has possibilities to produce a partitioning with full resolution if the agent
explore the state space uniformly.

Moore and Atkeson [40] proposed a partitioning method for continuous observa-
tion space. However, this method is formulated only for the shortest path problem of
robot navigation and requires the pre-defined local controllers for transition between
partitioned states.

Asada et al. [5, 6] proposed a method which cuts off regions from the sensory space



12 CHAPTER 2.

as states recursively from the goal state. The construction process corresponds to
behavior learning, and as a result the purposive behavior is acquired, simultaneously.
They applied the method to a ball shooting behavior using vision system on a real
robot. In order to construct the state space suitable for the robot to perform the
given task, they need a sufficient amount of uniformly sampled data.

Summary

Until we started the study on state-space construction, there are few works which
divide a sensor space by the robot itself. The incremental segmentation approaches
need immediate reward information to evaluate the division of the sensory space, and
this assumption limits the application of the real robot tasks such as room wander-
ing behavior with obstacle avoidance. Though the off-line segmentation approaches
provided sophisticated methods which manage segmentation process and action plan-
ning one simultaneously, the presumption which learning agent has to experience all
kinds of situations in the environment and store the all data of sensory informations
and motor commands is impractical. The function approximation approach has been
shown as no robust in several experimental studies. Only CMAC can approximate
successfully state action value function, however, it has its own problem of quantiza-
tion.

2.2 Multi-Module based Reinforcement Learning

The lack of scalability of reinforcement learning algorithm has limited its applications
to simple tasks. One of the approaches to applying it to tasks with large state and
action spaces is an introduction of multi-module structure in the system. Fortunately,
almost long time-scale task might be generally decomposed into some simple subtasks
so that the searching space could be divided into some smaller ones. We can assign
learning modules to subgoals, then switch them while the system executes the long
time-scale sequential tasks. The learned policies for the subtasks are reusable even if
the sequence of the given subtasks has changed.

Singh [53, 50] has proposed Compositional Q-learning in which an agent learns
multiple sequential decision tasks with multi learning modules. He assumes that
a complex, sequential task is built up in a systematic way from simpler elemental
tasks. Each module learns its own elemental task. On the other hand, the system
has a gating module for the sequential task, and this module learns to select one of
the elemental task modules. He has applied his method to navigation tasks in a grid



SECTION 2.2. 13

world. He assumes that the reward is zero in all state except for the goal state of
elemental tasks.

Tham and Prager [68] have improved Singh’s method so that the reward func-
tion can be non-zero in states other than the desired final states of elemental tasks,
and extended the elemental task modules using CMAC in order to handle a large
state/action space. Their method is applied to a reaching task with a two-link ma-
nipulator.

Mahadevan and Connell [34, 33, 16] described a system that decomposes a single
complex activity into a series of sub-activities, each of which is learned by an individ-
ual module. They applied their method to the box pushing task using a real mobile
robot. They prepared three subtasks of the box pushing task such as “finding a box”,
“pushing a box”, and “getting unwedged”, and coordinated the learned behavior in
the subsumption architecture manner.

Whitehead et al. [74] have also proposed one of the modular architectures. Their
objective is to study a system that coordinates behaviors in order to pursue multiple,
independent goals in parallel. They have addressed the issue of behavior coordination
between parallel competing goals.

Ono and Fukumoto [43, 45] have also proposed a very similar method to the
Whitehead’s one. They prepared subspaces based on the selected sensory information,
assigned them to learning modules. The all learning modules try to acquire the
purposive behavior for the same task. The system selects the module which will
return the highest action value. The Whitehead’s method aims to acquire multiple,
independent behaviors, and coordinate them for the parallel goals. On the contrary,
the Ono’s method is designed to reduce the searching space by dividing the enormous
state space into subspaces.

Carrearas et al. [12] also proposed another behavior coordination method. The
proposed method has a number of behavior learning modules based on reinforcement
learning algorithm with a feed-forward neural network, and the coordinator blends
the outputs of all modules based on the activation level of the behaviors and the
predefined priority. The merit of this coordinator is taking an advantage of both
the competitive and cooperative coordination systems; the competitive coordinators
show good robustness in the behavior selection, while the cooperative ones show
the smoothness of the behavior changes. The demonstration of application to an
autonomous underwater vehicle was given.

Doya et al. [22] have also proposed MOdular Selection and Identification for
Control (MOSAIC), which is a modular reinforcement learning architecture for non-
linear, non-stationary control tasks. The basic idea is to decompose a complex task
into multiple domains in space and time based on the predictability of the environ-
mental dynamics. Each module has a state prediction model and a reinforcement



14 CHAPTER 2.

learning controller. The models have limited capability of state prediction as linear
predictors, so the multiple prediction models are required for the non-linear task. A
domain is specified as a region in which one linear predictor can estimate with its own
prediction capability. The responsibility signal is defined by a function of the predic-
tion errors, and the signals of the modules define the outputs of the reinforcement
learning controllers. Haruno et al. [25, 26] have proposed another implementation of
MOSAIC based on multiple modules of forward and inverse models.

Summary

The most important problem on the multi-modules reinforcement learning is that
subgoals may require a significant amount of a priori knowledge about the task do-
main. In the all of above methods, human designer have to define the subtasks based
on their own experiences and insights.

Doya et al. and Haruno et al. show interesting task decomposition methods,
which do not need any designer’s help to decompose a complex task into multiple
domains in space and time. The key idea is that the decomposition should be done
based on the controller capability. This idea is similar to the concept of our proposed
approach.

2.3 Reuse of Acquired Knowledges

Reuse of the learning/control modules is one of the most important issues. Adaptation
of already learned behaviors to newly encountered situations is a very useful property
in applying reinforcement learning methods to real robots. A new behavior generation
by combination of already learned behaviors is also important for the acquisition of
a variety of behaviors in various situations. There are several works which deal with
reuse of previous obtained policy.

Thrun [69] proposed “lifelong learning” which accelerates the learning by storing
invariant knowledge for a environment in advance and reuses it as a priori knowledge
in a new environment.

Tanaka and Yamamura [65] applied the similar idea to a simple navigation task on
a grid world using a reinforcement learning method, in which the knowledge invariant
in previous environments are extracted in advance and checked in a new environment
if it is effective or not.

Minato and Asada [38] proposed a method which adapts robots to environmental
changes by transferring a learned policy in the previous environments into a new one
and modifying it to cope with these changes.



SECTION 2.4. 15

These methods concentrate on adjustment of certain behaviors to cope with new
environments based on the knowledge obtained in the previous environments. How-
ever, the problem is that the state spaces of these methods are fixed and they cannot
handle the situations in which the state space or the state valuables are varying,

On the other hand, there are a number of studies which lead to make efficient
the learning process in a higher order state space by a new behavior generation by
combination of already learned behaviors each of which has divided small state space
(ex. [70][75]). However, the final state space consists of all state variables, each of
which is divided finely, as a result, the number of state becomes enormous large.

2.4 Hierarchical Control Structure

There have been a variety of works on a multi-layered control architecture. Albus|[3]
proposed Real-time Control System, which consists of task decomposition, world
modeling, and sensor processing modules at each layer of the hierarchy. The task is
decomposed in advance into parallel and sequential subtasks, to be performed by co-
operating sets of subordinate agents. However, he proposed only conceptual principle
in his paper, and there is no concrete procedure or algorithm of task decomposition,
cooperation between modules, nor development of the modules.

Singh [51, 52] has proposed a method of learning a hierarchy of models of the
environment that abstract temporal detail as a means of improving the scalability
of reinforcement learning algorithms. The concrete system shown in his paper has
two levels of the hierarchy, the given task was decomposed into a few sub-tasks by
hands, the lower module learns the behaviors of sub-tasks, and the higher learns the
sequence of the sub-tasks for to accomplish the given tasks. The demonstration is
shown in the simple grid world.

Kaelbling [31] proposed DG learning algorithm, which learns efficiently to dynam-
ically changing goals and exhibits good knowledge transfer between goals. Then, she
[30] proposed HDG algorithm which has a landmark network as an upper level of hi-
erarchy and enables to learn the behavior more quickly. The demonstration is shown
in the simple grid world, too.

Dayan and Hinton [17] have proposed Feudal Reinforcement Learning. The sys-
tem has a number of levels at multiple resolutions in a grid-division state space;
the higher level has coarser resolution while the lower has finer one. There are man-
agers(modules) on each level who have sub-managers on the lower level. The manager
sends a sub-goal set to one of the sub-managers, and give a reward if the sub-manager
achieves it. The system needs to specify an explicit subgoal structure in order to
achieve a hierarchical decomposition of the state space in advance. This work has



16 CHAPTER 2.

been applied in a rather simple grid maze world.

Digney [18, 19] has proposed Nested Q-learning algorithm that generates of hierar-
chical control structures in a learning system. The system has a number of ()-learning
modules which has fixed, discrete states as a state space, and fixed primitive actions
and the commands to the other modules as a action space. Task decomposition is
done under two criteria; One is based on the received reinforcement signals, and the
other is based on the frequency of visits to particular state space locations. One mod-
ule can executes the behaviors of other modules as its own action, so this is regarded
as the system has an abstraction mechanism of action. However, this system does
not have an situation abstraction mechanism. This work has also been applied in a
simple grid maze world.

Stone and Veloso [54] proposed layered learning, and applied it to a multi-agent
learning system. At the lower-level, individual skills are learned, and more social
skills are learned at the higher-level [55].

Morimoto and Doya [41] applied a hierarchical reinforcement learning method by
which an appropriate sequence of subgoals for the task is learned in the upper level,
and behaviors to achieve the subgoals are acquired in the lower level. However, the
problem is that the human designers have to define the subtasks, landmarks, skills,
and subgoals based on their own experiences and insights.

Fujii et al. [24] proposed a multilayered reinforcement learning scheme for collision
avoidance. This method allows the system to reduce the computational memory by
decomposing whole state space into several subspaces, and to merge them at the
higher level. However, selection of the sensor information for each learning module is
constructed by human designer based on his/her own experiences and insights.

Hasegawa and Fukuda [27, 28] proposed a hierarchical behavior controller, which
consists of three types of modules, behavior coordinator, behavior controller and feed-
back controller, and applied it to a brachiation robot. However, the whole structure
of this hierarchical controller is designed by human, and the system only adjusts some
parameters of a certain behavior coordinators and behavior controllers.

Tani and Nolfi [67, 66] developed an on-line multi-layered sensory flow pattern
learning scheme. A set of recurrent neural net (RNN) modules is self-organized as
a set of experts to account for different categories of sensory flow which the robot
experiences. Meanwhile, another set of RNNs at the higher level learns the sequences
of module switching observed at the lower level. Their scheme, however, does not
have any control learning structure, which makes it difficult to acquire a purposive
behavior by itself.



SECTION 2.4. 17

Summary

One of the most important issues on the multi-layered learning system is self-construction
of the hierarchy, in addition to the self-generation of subgoals. In the all of the above
methods, human designers have already prepared hierarchical structures in advance
based on their own experiences and insights.

The state and action space construction is also one of the important issues in the
multi-layered learning system. To the best of our knowledge, there is no study on the
construction of state and action spaces on the multi-layered modules architecture.






Chapter 3

State Space Construction by
Incremental Sensor Space
Segmentation for Vision based

Behavior Acquisition

3.1 Introduction

In this chapter, we propose a method by which a robot learns a purposive behavior
within less learning time by incrementally segmenting the sensor space based on the
experiences of the robot. Here, we do not deal with the sensor selection problem. !
The incremental segmentation is performed by constructing local models in the state
space, which is based on the function approximation of the sensor outputs to reduce
the learning time and the reinforcement signal to emerge a purposive behavior. The
method is applied to a soccer robot which tries to shoot a ball into a goal. The
experiments with computer simulations and a real robot are shown. As a result,
our real robot has learned a shooting behavior within less than one hour training by
incrementally segmenting the state space.

"'We have already tried to apply principal component analysis to acquire feature vector repre-
senting the environment. We show the details in the end of this chapter as an appendix.

19



20 CHAPTER 3.

3.2 Basics of Reinforcement Learning

Before getting into the our method, we briefly review the basics of the reinforcement
learning.

We assume that the robot can discriminate the set S of distinct world states, and
can take an action from the action set A. The world is modeled as a Markov process,
making stochastic transitions based on its current state and the action taken by the
robot. For each state-action pair (s, a), the reward r(s,a) is defined.

The general reinforcement learning problem is typically stated as finding a policy
that maximizes discounted sum of the reward received over time. Watkins’ ()-learning
algorithm [14] gives us elegant method for doing this.

In the @-learning algorithm, the robot takes an action a € A in a state s € S and
transits to the next state s’ € S, then it updates the action-value function Q(s,a) as
follows.

Q(s,a) < (1 —a)Q(s,a) + alr(s,a) + v max Q(s',a’)) (3.1)

a'e
where « is a learning rate and v is a discounting factor.

After a sufficient number of trials, the optimal decision policy is obtained as taking
the action a which maximizes the (s, a) value at the state s.

3.3 Self-Segmentation of Continuous State Space

We focus on the state space segmentation, and reduction of learning time, now. As
a basic idea coping with these problems, we adopt the incremental segmentation of
the state space by which the state space is autonomously segmented, and we expect
the reduction of the learning time and the capability of coping with dynamic change
of the environment.

A key issue is to find the basic policy to segment the state space so as to realize the
desirable features described above. The following two principles can be considered.

A: Segment the state if the prediction of sensor outputs is incorrect.

B: Segment the state if the same action causes the desirable or undesirable result
(ex., transition to the goal states or non-goal states) even though the prediction
itself is correct.

According to the first, the robot can discriminate the world situations with as few
states as possible based on the experiences until the current time. This contributes
to the followings:



SECTION 3.4. 21

1. aslong as the prediction of sensor outputs is correct, tedious exploration process
can be eliminated, and therefore

2. reinforcement learning converges immediately. Further

3. the robot can cope with dynamic change of the environment due to its incre-
mental property of the segmentation process.

However, A does not care where the goal state is. On the other hand, B contributes
to the emergence of the purposive behavior. Even though the prediction is correct,
it would be nonsense if the same action from the same state resulted in different
situations. This state should be separated so that the same action can always cause
the desirable transition.

From the above arguments, A is related to the world model construction by coarse
mapping between states and actions far from the good states. While, B is related to
the the goal oriented segmentation based on the reinforcement signals. As a result
fine mapping between states and actions near the goal states is obtained.

3.4 Algorithm

Figure 3.1 shows the rough flow of the proposed method. First, the robot acquires
sensor outputs as data. If the data are consistent with the current local models, the
robot updates the local models. Else, the robot builds new local models, and initialize
the action value function by reusing the knowledge obtained by the past experiences.
Then, it learns the policy using reinforcement learning, and returns the beginning.
The robot iterates this cycle forever.

3.5 Action Space and Data Structure

In the conventional reinforcement learning methods, an “action” is defined as an
execution of motor command per fixed sampling interval. In a real situation, this
definition often causes “state-action deviation problem” as pointed out by Asada et
al. [7]. They defined such an action as an action primitive, and a action is defined as
a sequence of action primitives until the current state changes. Here, we follow their
definition.

We define a data set d; € D, (i = 1,2,---) as a triplet of action primitive m; € M,
sensor value s; € S and its gradient s; € S.



22 CHAPTER 3.

y
Sensor Outputs

y

Yes s eonssent with the \J\o
current Local Model ?

Build a new

Local Modd

Update the
Loca Model

Initialize the
Action Vaue
Function

Reinforcement Learning
|

Figure 3.1: The rough flow of the proposed method

If the robot stores the all data of its experiences, the amount of data will exceed the
capacity of the robot. Therefore, it is not practical to store the all data. Further, the
robot often receives incorrect data because of sensor noise, change of the environment,
and the uncertainty of motor commands. Then, we update the gradient of inputs
vector 8;, when the robot receives a new data set d;.

if
|s; — 8| <€ and m; =m,;
then
8, =(1-0)s; + s
else

register s; as a new datum.

Here, 0 < 5 < 1 and e stands for a similarity threshold. |-| means weighted Euclidean
norm.



SECTION 3.6. 23

3.6 Local Model Construction

state j-1 State ; state ;4 state;, ,

Figure 3.2: The construction of local model and the segmentation of sensor space

We first explain the method of local model construction by using a linear model
of the the gradient of sensor values, that is,

s=As+b.
The algorithm for local model construction and segmentation is as follows:

1. Gather data sets which have the same action primitive.

2. Apply the weighted linear regression method to fit a linear model to the data
sets.

3. Divide the data into two with a method of cluster analysis using weighted
Euclidean norm as similarity and return 2 if the unbiased variance of the residual
exceeds a certain threshold, else stop.

Figure 3.2 shows an example of the construction of local model and the segmentation
of sensor space in case of one dimension of the sensor value.



24 CHAPTER 3.

The segmented regions obtained by the above process are regarded as “states”
for the reinforcement learning method. Each segmented region has a number of data
sets d;, and let the s; (i = 1,2,---) be the representatives of the region. A new
sensor values s, is classified into one of the states by finding a representative in the
corresponding state based on NN(nearest neighbor) methods.

3.7 Composite of the Segmented Sensor Spaces by

A Number of Action Primitives

2 A
Q
=]
T
>
o
% m
LL
Feature value 1 N
Sensor space segmented >
by primitive action 1 <
[¢)]
:
N
© LL
>
T
3 Feature value 1
% Composite Sate Space
i

Feature value 1

Sensor space segmented
by primitive action 2

Figure 3.3: Example of composite State Space based on segmented sensor spaces by

two action primitives

The learning states are defined as the segmented regions as shown in previous
subsection. However, each action primitive may result in a different segmentation of



SECTION 3.8. 25

the feature space in general. The system segments a sensor space as shown in previous
subsection for each action, then it constructs new state space as direct product of all
segmented spaces.

Figure 3.3 shows an example. There are two action primitives, and the system
segments the sensor space (see the left side of the figure). Then, it constructs a new
state space (see the right side of the figure).

3.8 Sensor Space Segmentation Based on Reward

Distribution

Near the goal state, the segmented region obtained by the above process is not always
appropriate because multiple transitions (success in the reaching the goal state or
failure) from a same pair of the sensor values in the same region and the action
primitive can be often observed. Then, we use the reinforcement signals to divide the
segmented region so that the same action primitive from the divided region can reach
the unique state (the goal state or others).

There are a number of methods which segment sensor space based reward distri-
bution [32, 23, 77]. The goal state can be specified the easily if the reward is given
correctly when the situation comes into the goal state. Since acquiring th reward is
the most important for the robot, accurate recognition of situations around the goal
state might enable the robot to behave accurately.

Then, the system records the sensory-motor sequence before it receives the reward,
and it segments the feature space based on the reward distribution. We define a data
set df € D, (i=1,2,---) as a triplet of action primitive m; € M, sensor value s; € S
and the given reward r; € R. The detail algorithm of storing, updating data and
local model construction is almost same as described in the former sections.

3.9 Composite of the Segmented Sensor Spaces

3.6 shows the sensor space segmentation based on local liner model, and 3.8 shows the
segmentation based on reward distribution. If the system adopts these two approaches
simultaneously, the sensor space would be divided too much.

Therefore, we set a priority; reward based segmentation is first and model based
segmentation is second. This means that if the space is already divided by the re-
ward based segmentation, there is no more segmentation by model based approach.
The reason is that reward based segmentation is likely more appropriate than model



26 CHAPTER 3.

based one because the reward is the most essential element for purposive behavior
acquisition.

3.10 Action Generation

As we stated in the section 3.5, we define “action” as “a sequence of several action
primitives until the current state changes”. We prepare two kinds of action. One
is the a sequence of the same action primitive as one action until the current state
changes. The other is a sequence of action primitives which is generated with the
local models as follows.

One can calculate the desired gradient of sensor values s, from the current sensor
values s; and desired sensor values s4, that is,

Sd:Sd—Sj.

Since the linear model parameters have been obtained in each local model, we can
predict a desirable action to satisfy the above equation. The robot carries out the
action primitive mgy which is closest to the desired gradient of sensor values.

mqg = arg Hnljn(éd — 8m,)? (3.2)

3.11 Reuse of the Knowledge Obtained by Expe-

riences

Theoretically, the action value function should be reset every time the new state space
is constructed during the incremental segmentation process of the state space. This
prevents the knowledge obtained by the past experiences from being used efficiently
in the learning process. Then, we consider to reuse the knowledge by calculating the
new action value function for the new segmented state space from the old state space
and its action-value function.

Basic idea is to adopt a new action value function calculated by weighted sum of
the old action value function as the initial knowledge for reinforcement learning. The
weights are calculated based on the numbers of the sensor value representatives in
both the new and old states. Concrete procedure is given as following.

Seld and S™* denote the old and new state spaces, respectively. s(k = 1,2,---,n),
state;?(j = 1,2,---,n°?) and state;""(i = 1,2,---,n"") denote the sensor value of
stored data d;, a state of the old state space and a state of the new state space. We pre-

pare a n%% xn" matrix T (state®?, state™") of which component ¢(state", state?*")



SECTION 3.12. 27

Q =g-Q1+le
EECRY

Figure 3.4: Recalculation of Q) value

represents the number of sensor value representatives s, that are classified into
state7 from state?®. Then, we can calculate the action-value function of the new

state space Q(statel", a) as follows.

7 )

nold
Q(state™,a) = Y w;Q(state™, a), (3.3)
j=1
where
t(state®, statelv)
Wji = 0l ! . (3.4)

Mo t(statef™e, stater”)

3.12 Experiments

3.12.1 Task and Assumptions

Only one assumption we need is continuity of the sensor space. This makes local model
construction efficient, and therefore contributes to eliminate unnecessary exploration.

We apply the method to shooting behavior acquisition by a soccer robot as an
example of robot tasks. The task for a mobile robot is to shoot a ball into a goal as
shown in Figure 3.5(a).



28 CHAPTER 3.

Primitive action 7

(a) The task is to shoot a ball into the goal

(b) A picture of the radio-controlled vehicle with a ball and
a goal

Figure 3.5: A task and our real robot



SECTION 3.12. 29

We assume that the environment consists of a ball and a goal, that the mobile
robot has a single TV camera and can get the primitive features of the ball and the
goal, and that the robot does not know the location and the size of the goal, the size
and the weight of the ball, any camera parameters such as focal length and tilt angle,
or kinematics/dynamics of itself. Figure 3.5(b) shows a picture of the real robot, the
ball and the goal used in the experiments.

The sensor information the robot discriminates consists of five features of the ball
and the goal. The features are the size and the position of the ball on the image
and the first, second, and third principal component of the goal region on the image
which is described in the section 3.14. ? The robot often loses the ball and/or goal
because of its narrow angle of view (65°). In such a case, there are no feature values
of the ball and/or the goal. However since the robot knows into which direction it lost
the ball and/or the goal by memorizing the previous state, large absolute constants
are assigned to these lost states. As a result, the local models for these states are
obtained with their gradients equal zeros (The left side of Figure 3.2 indicates such a
case).

3.12.2 Simulation

The number of action primitives which the robot can take is seven as shown in Figure
3.5(a). We assign a reward value 1 when the ball was kicked into the goal or —0.1
otherwise. 90% of the time the robot selects the action specified by its optimal policy,
the remaining 10% of the time it takes a random action.

Figure 3.6 shows the success rate and the number of states during the incremental
state space segmentation and the processes of shooting behavior acquisition. Here,
the success rate indicates the number of successes in the last twenty trials.

Figure 3.7 shows a projection of the state space after 1,110 trials, where the state
space in terms of the ball size and the goal size is indicated when the position of the
ball and the goal are center of the screen and the orientation of the goal is frontal.
The upper left region pained black means a situation in which the ball size is small,
the goal size is large, and the positions of ball and goal are center of the image. Since
such a situation is impossible in this experimental situation, the system extrapolates
the situation from the region which is near to it.

After the learning, the number of states is 28, the number of data is 141 (for
left-forward action, 17, for forward action, 32, for right forward action, 15, for left-
backward action, 13, for backward action, 15, for right backward action, 13, and for

2These three principal components represent the size, the 2 position, and the inclination of the
goal region on the image.



30 CHAPTER 3.

number of states ——
30 - success rate (20/20) 1
20 + " o ) -
1 ‘\1 ﬁ‘ 'AI l‘L L,\ 5' § I j ‘\‘”’,! ) J‘l\ Jr ll‘ r‘ ‘ ‘7\" l“.\
"‘,ﬁ '1‘«' \‘W‘A W 1 "“‘ Iw h\v‘ )
i W
10 | '" 1
0 ! 1 1 1 1
0 200 400 600 800 1000

trial number

Figure 3.6: The success rate and the number of states

stop action, 36, for goal state, 94).

Figure 3.8 shows sequences of the learned behavior. The robot moves around and
goes back to find the ball and the goal when they are out of the view as shown in
Figure 3.8(a), then it goes forward and pushes the ball into the goal when it capture
the both as shown in Figure 3.8(b).

Figure 3.9 shows the success rate and the number of states in the case that the
ball diameter suddenly became twice at the 500th trial. It suggests the proposed
method can deal with dynamic change of the environment.

Figure 3.10 shows the success rate while the system took the rate of optimal policy
of 90%, 70%, and 50% during the learning time. Figure 3.11 shows the number of
states in the situations. Figure 3.10 shows that the success rate is high when the
agent took high rate of optimal policy, and Figure 3.11 shows that the system with
exploration behavior divided the sensor space more than the system with exploitation
(optimal behavior).

Figures 3.12 and 3.13 show the success rate and number of states in terms of



SECTION 3.12. 31

first principal component score of goal

0 5 10 15 20 25 30 35 40
ball diameter

Figure 3.7: Result of state space construction

the fitting thresholds, respectively. We can see that the lower threshold leads better
performance in general. The reason is that the system with the lower threshold tends
to segment with more fine resolution than the system with the higher threshold.
However, the lower threshold prevents the success rate drastically sometimes (see the
curve at the 110 th step and the 340 th step). The reason might be that the fine
incremental segmentation of the state space prevents the system from the convergence
of state-action value (@) function because the increase of the number of the state
requires the system to update () function more frequently.

Figure 3.14 shows the sequence of the state space during the learning. The horizon-
tal and vertical axes indicate ball size and the value of the first principal component
describeed in 3.14, while the position of the ball and the goal are center of the screen



32 CHAPTER 3.

i @
1"l :

N g
(a) Finding (b) Dribbling

Figure 3.8: Some kinds of behaviors during learning process

and the orientation of the goal is frontal. The upper left region on the figure means
a situation in which the ball size is small, the goal size is large, and the positions
of ball and goal are center of the image, and such a situation is impossible in this
experimental situation.

The characters such as F, B, LF ,and G indicate forward action, backward action,
left forward action, and the goal oriented action described in 3.10.



33

SECTION 3.12.

T
HEe)
=N
[
= O
NN
— N
S
—_
e = -
EQ
=]
(=)

>

(7]

30 r

1000

800

600

400

200

trial number

Figure 3.9: Success rate and the number of states in the case that environment change

one the way

(0zZ/02) el ss800Ns

700 800 900

600

500
Trial number

400

300

200

100

Figure 3.10: Success rate with different rates of optimal action



34

CHAPTER 3.

40

35 |

25 |

20

State number

15 |

10

Il Il
100 200 300 400 500 600 700
Trial number

Figure 3.11: Number of states with different rate

800 900

of optimal action



SECTION 3.12.

—— Low threshold
— — High threshold

18

10

Success rate (20/20)

too—200—300 ziuul_ .b'iJu t‘é’uu 700800900
rial number

Figure 3.12: Success rate with two kinds of fitting thresholds

Low threshold

2 — — — High threshold
20

g Wl ,J RN DR B

= 19 l‘l 1l

3 [

()

IS ]

n 10
5

To0—200—300 4'uu_|_ .b})u t‘éuu 700800900
rial number

Figure 3.13: Number of states with two kinds fitting thresholds

35



36

first principal component score of goal

first pricipal component score of goal

first pricipal component score of goal

CHAPTER 3.

goal state

:
©
<3
-8p S
6p B
g8
£
3
2
- kS
5
44
-20 .
q
y 5 1015 303540

bgll d\amgter

(a) 20 Trial

goal state

first pricipal component score

(b) 50 Trial

goal state

ball diameter

(¢) 100 Trial

goal state

MO 1520 25 30
ball diameter

(d) 300Trial

Z
8
B
g
£
8
2
3
z

(e) 600 Trial

(f) 1000 Trial

Figure 3.14: Change of the state space segmentation



SECTION 3.12. 37

3.12.3 Experiment on the Real Robot

Sun WS
SPARC station 2 Monitor
]
VME BOX PCY8

MC68040

MaxVideo

DigiColor

parallel /0 [—

R/IC
transmiter

Soccer Robot

Figure 3.15: A configuration of the real robot



38 CHAPTER 3.

(a) input image (b) detected image

Figure 3.16: Detection of the ball and the goal

Figure 3.15 shows a configuration of the real mobile robot system. Figures 3.16(a)
and (b) show an image taken by a TV camera mounted on the robot and an image
processed by Datacube MaxVideo 200, a real-time pipeline video image processor.
The image processing and the vehicle control system are operated by VxWorks OS
on MC68040 CPU which are connected with host Sun workstations via Ether net.
The result of image processing are sent to the host CPU to decide an optimal action
against the current state. The sampling time is about 30ms.

Figure 3.17 shows an example of the linear model fitting for the situation in which
the robot takes a forward action primitive when watching a ball. When the ball
is located far from the robot and the robot takes a forward motion, then the ball
diameter on the image increases. On the other hand, when the ball is located near
from the robot, the ball diameter doesn’t change any more while the robot takes a
forward motion, because the ball is collided with the robot.



SECTION 3.12.

dif bal diameter
2k
15
1k

0.5

ball position

o 3 30 B 2

15

ball diameter

39

Figure 3.17: An example of linear model fitting : the data is obtained while the robot

gets a forward action primitive.

goal state

first principal component score of goal

=20 |

0 10 20
ball diameter

Figure 3.18: state space construction

of real robot experiment



40 CHAPTER 3.

Figure 3.18 shows the state space after 72 trials. The state space in terms of the
ball and the goal size is indicated when the position of the ball and the goal are center
of the screen and the orientation of the goal is frontal. The numbers of acquired states
and data are 18 and 151, respectively.

Figure 3.19 shows how the robot tries to shoot a ball into the goal. Because
of the sensor noise and the uncertainty of the motor commands, the robot often
misunderstands the states, and takes wrong actions, therefore it fails to do the task.
@D indicates that the robot is going to shoot a ball into the goal and move forward.
But it fails to kick the ball at @ because the speed is too hight to turn. The ball is
occluded by the robot in @. Then, it goes left back so that it can shoot a ball at @).
But it fails again at @. Then, it goes left back again at . After all, the robot does
the shooting task successfully at ®.



SECTION 3.12.

41

Figure 3.19: The robot succeeded in shooting a ball into the goal



42 CHAPTER 3.

3.13 Conclusion and Future Works

We presented a method of incremental segmentation of sensor space based on the ex-
periences of the robot, by which the robot learns purposive behavior within reasonable
learning time.

Let us discuss to what extent the proposed method can be scaled up. In the
linear local model, we will be able to easily cope with reaching multiple stationary
goals or avoiding stationary obstacles, because the gradient of the sensor values can
be reasonably explained by the linear model. However, the more complicated task
such as reaching the goal with obstacle avoidance, seems difficult because the state
space suitable for multiple tasks is difficult to build by the current linear local model.
Further, in case of the environment including other agents, collaboration/competition
with them are the focused task to the robot, and actions of other agents seem difficult
to be explained by the current model because they are not simply related to the
actions of the robot. Behaviors for collaboration/competition might have much more
complicated relationship to the robot behavior and a method being able to cope with
these highly complicated relationship between the robot actions and other agents’
behaviors should be developed.

3.14 Appendix: Extraction of Feature Vector from
Multi-dimensional Sensor Space

We applied principal component analysis to acquire feature vector representing the
goal on the field for the soccer robot. Principal component analysis is one of the
statistic method which enables us to discover or to reduce the dimensionality of the
data set and to identify new meaningful underlying variables [78].

Here is the setting. The image processing system has already extracted the region
of the goal on the image, and several primitive feature variables of the region on the
binary image [76] as following:

e arca of the goal region on the image S = [ dx dy

_— fsyila:dy

f rdxdy
Uy 5

e center of the goal region on the image T =

e moments of the goal region on the image
Js(x — T)*dx dy, [¢(y —Y)*dzdy, [¢(x —T)(y — y)dz dy

We have sampled the data when we put the robot randomly on the field and the robot
capture the any parts of the goal on the image. The number of data is 4,350.



SECTION 3.14. 43

Table 3.1 shows that the first principal component has large weights of area, the
y axis of the center, the second moments of z, y axes of the goal region on the image,
then this first principal component represents the size of the goal region of the image.
The second component and third one have large weights of x axis of center and
covariance moment around the center of the goal region of the image. The covariance
moment around the center of the goal region is correspond to the inclination of the
goal view. Therefore, the second component and third component vectors represent
the x position and the inclination of the goal region on the image. Figure 3.20 shows
the contributing rates.



44

CHAPTER 3.

Table 3.1: Weights of Goal Vectors by Principal Component Analysis

Principal Component 1 \ 2 \ 3 \ 4 \ 5 \ 6
Contribution Ratio (%)
52.0 \ 20.0 \ 14.0 \ 10.0 \ 2.9 \ 0.9
variable H weight
area of the region || 0.540749 | 0.116863 | 0.024735 | -0.227210 | -0.218212 | 0.770766
z-axis of the center || 0.088836 | -0.617226 | -0.770923 | -0.128451 | -0.001237 | 0.017783
y-axis of the center || 0.390129 | -0.275403 | 0.126652 | 0.826337 | -0.262000 | -0.066596
second moment
around y-axis || 0.517237 | 0.151763 | -0.012555 | -0.377643 | -0.429306 | -0.618351
second moment
around z-axis || 0.528275 | 0.078885 | -0.012108 | 0.032007 | 0.833562 | -0.136771
covariance moment
around the center || 0.029817 | -0.707300 | 0.623474 | -0.324660 | 0.067894 | -0.010170
60
50 i
40 -
£ ow| ]
20 | 1
10 B
0 Il Il Il Il —\‘—Y—\
0 1 2 5 6 7

Figure

principal component

3.20: Contributing rate of principal component




Chapter 4

Behavior Acquisition by
Multi-Layered Reinforcement

Learning

4.1 Introduction

In order to realize an autonomous robot which acquires various behaviors by itself
in real world, it is necessary to be able to manage a wide range of state and action
variables according to situations, to keep the spaces as small as possible, and to
learn/control behaviors based on the small state and action spaces.

It is almost impossible or impractical that robot acquires the various behaviors for
the given tasks based on a huge monolithic state/ action space which consists of all
sensors’ information and actuators commands, because the computational resources
are limited and learning time is not eternity from a practical viewpoint.

It is almost impossible or impractical that robot acquires the various behaviors for
the given tasks based on a huge monolithic state/ action space which consists of all
sensors’ information and actuators commands, because the computational resources
are limited and learning time is not eternity from a practical viewpoint.

Another approach to the problem of the curse of dimension and the perceptual
aliasing is to adopt a hierarchical structure within leaning control system. That is,
the system

1. prepares learning/control modules of one kind each of which deals with a sub-
space divided from a whole state/action space,

45



46 CHAPTER 4.

2. abstracts situations and behaviors based on the acquired learning/control mod-
ules, and

3. acquires higher level, new behaviors based on the state and action spaces con-
structed from already abstracted situations and behaviors.

This approach can suppress the explosion of the state and action spaces since the
higher level learning/control system manages adequately small size spaces which are
abstracted in the lower levels.

In this chapter, we propose a method by which a hierarchical structure for behavior
learning is self-organized. The modules in the lower networks are organized as experts
to move into different categories of sensor value regions and learn lower level behaviors
using motor commands. In the meantime, the modules in the higher networks are
organized as experts which learn higher level behavior using lower modules. Each
module assigns its own goal state by itself. We apply the method to a simple soccer
situation in the context of RoboCup, and show the experimental results.

4.2 Multi-Layered Learning System

The robot prepares learning modules of a kind, makes a layer with the modules, and
constructs a hierarchy with the layers. The hierarchy of the learning modules’ layers
seems to play a role of task decomposition. The lower learning modules explore small
areas in the given environment, and learn lower level, fundamental behaviors. They
learn behaviors with narrower scope and shorter time horizons, focusing on the more
details. In contrast, the upper learning modules explore a large area, and learn higher
level, more abstracted behaviors based on the learning modules at the lower layer.
They have behaviors with broader scope, longer time horizons, and less concern for
the details.

4.2.1 Architecture

The the proposed architecture of the multi-layered reinforcement learning system is
shown in Figure 4.1, in which (a) and (b) indicate a hierarchical architecture with
two levels, and individual learning module embedded in the layers.

Each module has its own goal state in its state space, and it learns the behavior
to reach the goal, or maximize the sum of the discounted reward received over time,
using the continuous @Q-learning method [62]. The state and the action are constructed
using sensory information and motor command, respectively at the bottom level.



SECTION 4.2.

7777777777777777 ﬁ ””777”””7&”””””””“ wider area
1 |Goal State Activation | (Benavior Activation ) | A
| ~ T
! ! Assignment
| 1=
3 ’:(__ Assignment
a Y

narrower scope

[ Environment ]

(a) A whole system

Goal State Behavior

Activation Activation

Goal State Activation :

Y "closeness to its own goal state"
normalized state value

Reward>-| Q-Learning

Behavior Activation :
A instruction from higher level
{ to execute learned policy

State Action

(b) A behavior learning module

Figure 4.1: A hierarchical learning architecture

The input and output to/from the higher level are the goal state activation and the
behavior activation, respectively, as shown in Figure 4.1(b). The goal state activation
g is a normalized state value !, and g = 1 when the situation is the goal state. When
the module receives the behavior activation b from the higher modules, it calculates
the optimal policy for its own goal, and sends action commands to the lower module.
The action command at the bottom level is translated to an actual motor command,

then the robot takes the action in the environment.

IThe state value function estimates the sum of the discounted reward received over time when

the robot takes the optimal policy, and is obtained by @ learning.



48 CHAPTER 4.

One basic idea is to use the goal state activations g of the lower modules as the
representation of the situation for the higher modules. Intuitively, we can regard
that the state value function represents how close the robot is to the goal if the
module received reward only when it reached its goal, because the state value function
estimate the sum of the discounted reward received over time when the robot takes
the optimal policy. The state of the higher modules is constructed using the pattern of
the goal state activations of the lower modules. In contrast, the actions of the higher
level modules is constructed using the behavior activations to the lower modules.

4.2.2 Continuous Q learning

We use continuous ) learning [62] as a behavior learning method of the modules
which is a modified version of the normal Q-learning. Here, we will briefly review the
basics of continuous Q-learning.

First, we quantize the state (action) space arbitrary. Each quantized state (ac-
tion) can be the representative state (action). The state (action) representations are
given by a contribution value vector of the representative states (wf,---,w?) (actions
(w§, -+, w?)). A contribution value indicates the closeness to the related represen-
tative state (action). The summation of the contribution values is one.

The @)-value when executing the representative action a; at the representative

state s; is denoted by @; ;. A @-value at any state and action pair is given by:
Q= Z Z wiw; Qi ; (4.1)
i=1j=1

Given the representative state s;, the optimal representative action is calculated
by argmax; (); ;. The optimal action contribution vector a* for any state s is given

by:
a’ =w" =) wlelargmax Q; ;) (4.2)
i=1 J

where e(k) denotes an M-dimensional vector of which k-th component is one and
of which others are zeros. In order to obtain the optimal action based on eq.(4.2),
max () is calculated by:

n m

maxQ = Z Z wfw?* Qi,j (43)

i=1 j=1
Then, the () value when choosing an action a at the current state s, and transiting
the next state s’ given reward r is updated by:

Qij — Qij + avwjwi(r +~V(s') — Q(s, a)) (4.4)

where max Q" denotes () value when choosing the optimal action at the next state.



SECTION 4.2. 49

4.2.3 State and Action Space Construction

Learning modules at the bottom level construct the state/action space using the
sensory information and the motor command of the robot. Learning modules at
the higher levels construct the representative states and actions using the goal state
activations and behavior activations of the lower modules, respectively. That is, the
contribution vector of the representative states and actions at the higher modules is
given by the normalized pattern of the goal state activations and behavior activations
of the lower modules.

4.2.4 Self-distribution of Goal State

The basic idea for the distribution of learning modules is “to assign the goal state of
each learning module in the state space uniformly”. However, it seems difficult

@D to find out how the state space does extend, or
@ to define a distance function in the state space without robot’s experiences.

These problems will occur especially among the layers which are higher than the
bottom one.

Q(s.a)

Figure 4.2: State Value V(s) represents how close the agent is to the goal.

Now, we can use the state value function as the distance function which estimates
the distance to its own goal state, We can regard that V' (s) represents how close the
robot is to the goal if the robot received reward only when it reach its goal.



50

CHAPTER 4.

Figure 4.3 shows the distribution procedure of each learning module’s goal state in
the state space uniformly. It shows a case of one dimension state space, however, the
procedure is same way in the case of multi-dimension one. The vertical axis indicates
a goal state activation of a learning module. Figure 4.3 (a) shows an example of the
learning module distribution at the initial stage. There are three learning modules,
and they are not distributed uniformly. The region where the goal state activations
of other modules are low could be judged that there is no learning module of which
goal state is near. Then, the learning system adds a new learning module in that
place (Figure 4.3 (b)). When the density of learning module is high, the goal state
activations of the learning modules are high. Then, the system moves a learning
module’s goal state to the region where the goal state activations of other learning
modules are low (Figure 4.3 (¢)). When the density of learning module is still high,
the system deletes an learning module. As a result, the goal state of each learning
module distributes in the state space uniformly after the learning (Figure 4.3 (d)).
The algorithm is as follows.

@

@
8)
@

<)

Sneighbor — [ gneightor gych that contribution value is larger than a threshold T}

If ||Smet9hbor|| = 0, then exit, where || - || means the number of elements.
Search a learning module module ger, Which has its goal state in the S neighbor

Calculate the distribution of the maximum goal state activation V,"oquery (gneighbor
of the learning modules which are NOT module yyery

If module yyer,, doesn’t exist, and maximum of the V,02uery (gneightor) g low, then
add a new learning modules and exit.

If module gyery exists and the minimum of V/noquery (gneighbor) ig high, delete module gyery
and exit.

netghbor

min

. If module gery exist and its goal state is not s
ighb

goal state to sna 9"

min

which is the state where the V,0query (gneighbory jg minimum among
ighb
nedgniet then move the

min

Search s
Sneighbor



SECTION 4.2. 51

Learning Learning2 ‘ Learni n% ‘
- Module'l Module ‘Module3
=}
B8
2
3]
<
Q
he]
@
3
0]
A \ State Space 4
God State  Goal State Goa State
of Learning of Learning of Learning
Module 1 Module 2 Module 3
(a)Case 1

Learning

Module'l | | Module

: “Module3
S
g Add
k3]
<
Q
he]
@
3
(0]
i A / 7S(aleSpace A A
Godl State  Goal State Goa State God State
of Learning of Learnlng of Leamlng of Learning
Module1” Module Module 4 Module 3

(b)Case 2

Learnin Learning Learning ‘Learning
Moduleg Module2 Module 4 ‘ _Module3

Goal State Activation

Goal State  Goal State ~ State Space Gos State Goal State
of Learning of Learning of Learning of Learning
Modulel”™ Module2 Module 4 Module 3

(c)Case 3

Learning Learning Learning Learning
Module 1 Module 2 Module 4 ‘ Module 3

c

S

s

2

S

<

Q

®

@

®

o

U]

A 7 5 %

Goal State Goal State Stete Space Godl State Goal State
of Learning of Learning of Learning of Learning
Module 1 Module 2 Module 4 Module 3

(d)Case 4

Figure 4.3: An example of the assignment of the goal state among learning modules



52 CHAPTER 4.

o o
©.0
[2hs]
>
25
o<
Highest level State Space o
Qo o
©.0
o3
23
o<

Y

Higher level State Space

N efarNanNenfenangEnics

Goal State
Activation

Lowest State Space

Current  Target
State State

(a)Case 1

Goal State
Activation
Y

Highest level State Space
&

Goal State
Activation
Y

Higher level State Space // ’ i
@ o O @

Qc
©.o
7y
T3
o<
Lowest State Space
Current Target
State State
(b)Case 2
@

Goal State
Activation

Highest level State Space V

U B D @ e

®.S

oy

T3

o<

Higher level State Space / Y -
™ o @ @

Qc

®.S

oy

T3

o<

Lowest State Space A

Current Target
State State

(b)Case 3

Figure 4.4: Strategy in the multi-layered control structure (L.M. stands for learning

module).



SECTION 4.2. 53

4.2.5 Construction of Layer

We have described the distribution of the learning modules among each layer. The
learning system makes multi-layer by superposing them. Because it assigns fewer
learning modules than the number of states, fewer number of states is assigned at
higher layer. Then fewer learning modules will assigned at the higher layer. The
layering procedure stops when the number of learning module is one at the top layer.

4.2.6 Strategy in the Multi-Layered Learning System to Ac-
complish A Task

The target state is given to the multi-layered learning system in the state space at
the bottom layer. First of all, the system searches the learning module which is at
the target state. If the learning module can accomplish the given task, that is it
can reach the target state using its policy, the system sets the behavior activation
of the learning module. The system judges whether the learning module accomplish
the given task or not by its () value at the current situation. That is, if ) value is
hight, then the module has a policy to reach the target state, while if ) value is low,
the module has not experienced the situation, or the situation is very far from its
goal state. Then, if () value is higher than an threshold, the system judges that the
module can accomplish the given task.

If the learning module mOduleS which has the nearest goal state to the given target
state 57,8t the bottom layer cannot accomplish the given task, the system makes
the state at the higher layer which is related to the module moduleg be the target
state siarget, and searches the learning module modulegl7 which is nearest to the target
state s}, 1f this learning module module, can reach the target state si,,,, from the
current situation, then the system sets the behavior activation of the learning module.
This learning module modulesl7 sends its command to the lower layer by setting the
behavior activations of lower learning modules, then reaches its goal state (Figure 4.4
(b)). If the system reaches the region which the learning module moduleg at bottom
layer can deal with, that is, the situation becomes in case 1 in Figure 4.4, it starts
the learning module moduleg, then move to the given target state in the same way as
the first step.

If the learning module module; cannot deal with the current situation, the system
does same way at upper layer (Figure 4.4 (c)). The multi-layered system sets behavior
activation of only one learning module at each layer because of avoidance of conflict
among learning modules’ policies.



o4 CHAPTER 4.

4.3 Experiments

4.3.1 Overview

Figure 4.5: A mobile robot, a ball and goals

To evaluate the proposed method, we apply it to a simple navigation task. The
target situation is given by reading the sensor information when the robot is at the
target position.

Figure 4.5 shows a picture of a mobile robot we designed and built, a ball, and
a goal. Figure 4.6 shows an overview of the robot system. It has two TV cameras.
One has a wide-angle lens of which visual angles are 35 degrees and 30 degrees in
horizontal and vertical directions, respectively. The camera is tilted down 23.5 degrees
to capture the ball image as large as possible. Other has a omni-directional mirror and
is mounted on the robot. The driving mechanism is PWS (Power Wheeled System),
and the action space is constructed in terms of two torque values to be sent to two
motors that drive two wheels. These parameters of the system are unknown to the
robot, and it tries to estimate the mapping from sensory information to appropriate
motor commands by the method. The environment consists of the ball, and the goal,
and the mobile robot.



SECTION 4.3. 95

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Omni-directional PC
mirror §
\/ 3 (Pentium MMX 233MHz)
Camera |

Board (IP5000)

1 [ Camera
| | - PCI
3 Image Processing

Image Processing

yasu4 Board (IP5000)
ISA
@)
Motor Motor

Driver - | wireless LAN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.6: An overview of the robot system

In this experiment, the robot receives the information of only one goal, for the
simplicity. The state space at the bottom layer is constructed in terms of the centroid
of goal images of the two cameras and is tessellated both into 9 by 9 grids. And the
action space is constructed in terms of two torque values to be sent to two motors
corresponding to two wheels and is tessellated into 3 by 3 grids. Consequently, the
number of representative state and action are 162(9 x 9 x 2) and 9(3 x 3), respectively.
The representative state and action at the upper layer is constructed by the learning
modules at the lower layer which are automatically assigned.



56 CHAPTER 4.

Learning
Module

Iiect.vat.onl (E%'aavvsm%a

i [ Learnin Learnln
| ‘ Mgdule OO‘ Mgdule

| Goal State Activati on| (Behavi or Activati orD

Learning Learning
‘ Module ‘ Module 000

Learning !
Module |
=z — w

| Goal State Activati 0n| (Behavi or ActivatiorD

Learning Learning Learning
! ‘ Module ‘ Module 000 Module
State Action
x 7T S N
y EE y| A “ e forward
il left right
] : B 7 turn turn
EEE=m ’ bacidierd
C 1] B
Goal image Goal image Motor command
normal vision omni camera

Figure 4.7: A hierarchical architecture of learning modules

4.3.2 Experiment Results

The experiment is constructed with two stages, one is the learning one and other
is the task execution one using the learned result. First of all, the robot moved at
random in the environment for about two hours. The system learned and constructed
the four layers and one learning module exist at the top layer (Figure 4.7). We call
each layer from the bottom, bottom, middle, upper, top layer. In this experiment, the
system assigned 40 learning modules at the bottom layer, 15 modules at the middle
layer and 4 modules at the upper layer. Figures 4.8 and 4.9 show the distribution of
goal state activations of learning modules at the bottom layer in the state spaces of



SECTION 4.3. 57

wide-angle camera image and omni-directional mirror image, respectively. The z, y
axes indicate the centroid of goal images. The numbers on the figures indicate the
numbers of learning modules. The figures show that each learning module is assigned
on the state space uniformly.

The task for the robot is reaching a specified position using this multi-layer learn-
ing structure. The robot was located far from the goal, and faced opposite direction
to it as an initial position. The target position was locating in front of the goal and
watching it. Figures 4.10 (a), (b), and (c) show the time development of the goal
state and the behavior activations of learning modules at the bottom layer, the mid-
dle layer and the upper layer, respectively. We omitted the time development of the
top learning module’s activation because only one learning module existed at the top
layer, and it have never been set behavior activation. The straight line segments on
top of the figure indicate the development of the behavior activations. The numbers
in the Figure 4.10 (a) indicate the numbers of learning modules at the bottom layer,
and are correspond to the same numbers in the Figures 4.8 and 4.9. Figure 4.11
shows a rough sketch of the state transition and the commands to the lower layer on
the multi-layer learning system. This figure corresponds to the Figures 4.10 (a)0 (b)
and (c). The circles in the figure indicate the learning module, and the number in the
circle indicates the number of the learning module. The up arrows indicate that the
upper learning module recognizes the state which corresponds to the lower module
as the goal state. The thin solid lines indicate the state transition while the robot
accomplished the task. The down arrows indicate that the upper learning module set
the behavior activation of the lower learning module. When the robot located at the
initial position, the learning module 25 at the bottom layer, the learning module 10
at the middle layer, and the learning module 1 at the upper layer are near to their
own goal states. When the robot located at the target position, the learning module
1 at the bottom layer, the learning module 7 at the middle layer and the learning
module 0 at the upper layer are near to their own goal states. First of all, the system
tried to activate the learning module 1 at the bottom layer. However, the module
could not manage the current situation, then the system tried to activate the learning
module 7 at the middle layer. But, the module could not handle the current situa-
tion, either, then the system activated the learning module 0 at the upper layer. The
learning module 0 at the upper layer activated the learning module 15 at the middle
layer, then this middle layer module activated the learning modules 27 and 13 at the
bottom layer until about the 40 th step. Next, the learning module 7 at the middle
layer became able to handle the situation, and activated the learning modules 30 and
26 at the bottom layer until about the 360 th step. Finally, the learning module 1
at the bottom layer became able to handle the situation, and the system reached the
target position using this module.



58 CHAPTER 4.

Figure 4.8: The distribution of learning modules at bottom layer on the normal

camera image

11 \ LT A vi’.;

LA 7 /A
\ 5&! ) .4 \
goal stateactivat'o/‘ '}" 2% 0

{7 \ \4 #2020 LY
1 JARETA MO ‘ 7D
08 © JAlY's ,:;&‘c 20 AN 27
04 £ 212K ] LA 0
8 P/ [ 7 2 D)
FERF s S
O -, = A;V' 4
20 60
40 y
80
100

Figure 4.9: The distribution of learning modules at bottom layer on the omni-

directional camera image



SECTION 4.3. 59

behavior activation

—
T T I . :
1 B -
5
g
=
g
Q
w
%
©
=)
0 1 1 1 | |
0 100 200 300 200 500
step
(a) third layer
behavior activation
. 15 . 7 |
I T |
T T I . :
l B -
08 7
g |16 11
2 L 6 N [
0.6 ~ '
§ —,/ \ IA:I
o —~ en
m B - - ‘)’ H -
'g) 04 15 3 "“,h’,,- A
,"‘,('\ """"""""""" ; '\.15
02F 0 NP
I." N e e e e e e LI - .-.n:‘_/\- //__" [
0 ==.=’___’_;::I.:::::::::-_I-_-_-_-_-_===..-I---- _______ N .
0 100 200 300 200 =00
step
(b) second layer
behavior activation
271330 26 . L
I LI t |
T T I . i
l B -
08I 15 13
5 25127 |30
i) Al
= L
g 0.6 n l 9
g | -
= oaf I VPl
(=} \| |
o2 Wik o =
A \\y"/g\f :._’: —
/ _____
N,
0 100 200

(b) first layer

Figure 4.10: A sequence of the goal state activation and behavior activation of learning

modules at each layer



60 CHAPTER 4.

@/N Upper
A Layer
|
|
|
|
|
|
|

Middle
Layer

. Lowest
' Layer

Figure 4.11: A rough sketch of the state transition on the multi-layer learning system



SECTION 4.3. 61

4.3.3 Appendix : sequence of learning module distribution

godl state activation <

Figure 4.12: The distribution of learning modules at bottom layer (1000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



62 CHAPTER 4.

Figure 4.13: The distribution of learning modules at bottom layer (2000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 63

Figure 4.14: The distribution of learning modules at bottom layer (3000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



64 CHAPTER 4.

Figure 4.15: The distribution of learning modules at bottom layer (4000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 65

Figure 4.16: The distribution of learning modules at bottom layer (5000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



66 CHAPTER 4.

Figure 4.17: The distribution of learning modules at bottom layer (6000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 67

Figure 4.18: The distribution of learning modules at bottom layer (7000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



68 CHAPTER 4.

Figure 4.19: The distribution of learning modules at bottom layer (8000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 69

Figure 4.20: The distribution of learning modules at bottom layer (9000step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



70 CHAPTER 4.

Figure 4.21: The distribution of learning modules at bottom layer (10000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 71

Figure 4.22: The distribution of learning modules at bottom layer (20000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



72 CHAPTER 4.

Figure 4.23: The distribution of learning modules at bottom layer (30000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 73

Figure 4.24: The distribution of learning modules at bottom layer (40000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



74 CHAPTER 4.

Figure 4.25: The distribution of learning modules at bottom layer (50000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3.

Figure 4.26: The distribution of learning modules at bottom layer (60000

TOP:perspective camera image, BOTTOM:omni-directional camera image

75

step):



76 CHAPTER 4.

2

¢

A

goal state activation,

OO0
(@) N1Neplo B

Figure 4.27: The distribution of learning modules at bottom layer (70000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 7

ONROO—

godl state activation. '

3

Figure 4.28: The distribution of learning modules at bottom layer (80000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



78 CHAPTER 4.

OO0
(@) N1Neplo B

Figure 4.29: The distribution of learning modules at bottom layer (90000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 79

Figure 4.30: The distribution of learning modules at bottom layer (100000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



80 CHAPTER 4.

goal state activatiort

3

Figure 4.31: The distribution of learning modules at bottom layer (200000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 81

Figure 4.32: The distribution of learning modules at bottom layer (300000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



82 CHAPTER 4.

Figure 4.33: The distribution of learning modules at bottom layer (400000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 83

Figure 4.34: The distribution of learning modules at bottom layer (500000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



84 CHAPTER 4.

Figure 4.35: The distribution of learning modules at bottom layer (600000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 85

Figure 4.36: The distribution of learning modules at bottom layer (700000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



86 CHAPTER 4.

I

Figure 4.37: The distribution of learning modules at bottom layer (800000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



SECTION 4.3. 87

I

Figure 4.38: The distribution of learning modules at bottom layer (900000 step):

TOP:perspective camera image, BOTTOM:omni-directional camera image



88 CHAPTER 4.

4.4 Conclusion

We proposed a novel method of multi-layered reinforcement learning system. The
results show that the competitive learning enables to determine the subgoals or sub-
tasks by the robot without human designers intervention, and that as a whole system
the robot could show purposive behaviors.

The proposed approach should be able to reuse previously learned knowledge to
the related tasks. And, this enables the robot to learn always new, more abstracted
behaviors in newly encountered situations through all its life.



Chapter 5

State-Action Space Construction

for Multi-Layered Learning System

5.1 Introduction

In this chapter, we propose an approach to the problem of decomposing the large
state space at the bottom level into several subspaces and merge those subspaces at
the higher level. This allows the system

e to acquire behaviors based on new state features by adding new learning mod-
ules layers based on them while it leaves the already learned hierarchical struc-
ture,

e to acquire behaviors based on state space constructed with a large number of
state valuables by merging the modules at lower levels which acquire behaviors
based on the subspaces, and

e to save computational resources because the number of state could be small by
decomposing the whole state space into small subspaces.

We apply the method to a simple soccer situation in the context of RoboCup, show
the experimental results, and give discussions.

89



90 CHAPTER 5.

5.2 Multi-Layered Learning System

third
] level

N\ N second
level

N N s first
level

=
<
—
<
—
<
—
<
—
<
—
<
—
<

State Space

Figure 5.1: An overview of a hierarchical learning architecture (LM stands for learning

module).

=

| S
R

AT A

e e | =~
P AT A A
e O e e S 0w o
: e e e e e
22 P e el e
SR e S S o s s S
B e e s st Ty S
S i A Qi | M R
P o S s | s, | & eS| A2
S RTRRIREZA S N AT S5 s
AR P v ey TREZT
ORI g~ Bgho? T A RGN A TR
LI I 77 T RERAL AT
Y e . | S O N W
LI LM BRI
State Space | TR o foney
X =
L3
S
<

Figure 5.2: The relationships of situations and behaviors inside a layer and between

different levels



SECTION 5.3. 91

The basic idea of multi-layered learning system is same as the previous chapter.
The robot prepares learning modules of one kind, makes a layer with these modules,
and constructs a hierarchy with the layers. The hierarchy of the learning module’s
layers can be regarded as a role of task decomposition. The lower learning modules
explore small areas in the given environment, and learn lower level, fundamental
behaviors. They learn behaviors with narrower scopes and shorter time horizons,
focusing on the more details. On the other hand, the higher learning modules explore
large areas, and learn higher level, more abstracted behaviors based on the learning
modules at the lower layers.

This multi-layered learning system defines situations/behaviors based on the mod-
ules of lower layers, defines state and action spaces using them, and acquires new
abstracted behaviors on them. Figure 5.2 shows a rough sketch of this idea. The
system assigns learning modules on the state space of a certain layer. Each learning
module acquires the behavior to reach its own goal specified on the state space. The
another layer on it regards a region assigned to a lower learning module as a situation,
and a motion to a close region as a behavior.

5.3 State-Action Space Construction based on Lower
Learning Modules

When the higher layer constructs its state-action space based on situations and be-
haviors acquired by the modules of several lower layers, it should consider that the
layers are independent from each other, or there is dependence between them. The
layer might be basically independent from each other when the each layer’s modules
recognize a different object and learn behaviors for it. On the other hand, there might
be dependence between the layers when modules on all layer recognize the same ob-
ject in the environment and learn the behavior against it. For example, the system
would regard that both layers are independent from each other if the modules on one
layer acquire several navigation behaviors, and the module on the other layer acquire
object manipulation behaviors; in the case of robot in the RoboCup field, one layer’s
modules could be experts for ball handling and the other layer’s modules ones for
navigation on the field. On the other hand, it will recognize that there is a certain
relationship between the layers when the system captures a number of data which
represent one certain object with different sensor devices. In such a case, the system
can recognize the situation complementary using plural layers’ outputs even if one
layer loses the object on its own state spaces. Now, we propose “a multiplicative
approach” for the former, and “a complementary approach” for the latter.



92 CHAPTER 5.

5.3.1 Multiplicative Approach

State Space 1

Figure 5.3: State-action space construction based on multiplicative approach

The state space is constructed as a direct product of module’s activations of lower
layers. This case occurs when the plural layers deal with different objects from each
other. The higher modules recognize the lower module’s outputs of layers as different
one (In Figure 5.3, two layers are shown for the reader’s understanding but generally
it can be any number.). We design the state-action space for the modules managing
two different layer’s modules as shown in Figure 5.3. The system constructs an n x m-
dimensional state vector and an n + m-dimensional action vector if one lower layer
has n modules and the other has m ones.



SECTION 5.3. 93

5.3.2 Complementary Approach

State Space 2

Figure 5.4: State-action space construction based on complementary approach

The state space is constructed in an additive manner (see Figure 5.4) when there
is a correlation between activation patterns of lower layers. This approach seems to
be an extension of the method described in the previous chapter. The output of one
layer is assumed to be complementary to the other in this case; if the system acquires
the output of one layer, it can predict the output of other one to some extent. The
system does not need to recognize the outputs of two layers as different one, but as
the same one output. We design the state-action space of modules which manages
activations of two layers as shown in Figure 5.4. The system constructs an n + m-
dimensional state vector and an n + m-dimensional action vector if one lower layer
has n modules and the other m modules. This means that the modules which has
its goal state on the output of one lower layer extrapolate the information from the
other lower layer, if there is no active modules on the lower layer. This approach
saves computational resources compared to the “multiplicative approach”.



94 CHAPTER 5.

5.4 Strategy in the Multi-Layered Learning Sys-
tem to Accomplish A Task

T e - S | third

S % ,,,,,,,, AR UL\ leve
D as T i ’ S i _ \ ”””””” ' | second
' Do ,: level

frs
State Space 1 State Space 2

Target

Situation

(a) a target situation in one state space
‘ ’ forth
@ 2
, third
o el

second
| @’Ie«d
A
| first
level
State Space 1 State Space 2
T
Target
Situation

(b) a target situation in two state spaces

Figure 5.5: The strategy in the multi-layered control structure



SECTION 5.4. 95

The basic idea of the strategy in the multi-layered system is same as describeed in
the previous chapter. The target state is given to the multi-layered learning system
in the state space at the bottom level. Figure 5.5(a) shows this situation. If the
target situation is specified in one state space, the system executes the procedure
described in the previous chapter. first of all, the system searches a module nearest
to the target situation. If the module can accomplish the given task, it applies its
optimal policy. Else, the system searches the module nearest to the target situation
at the higher level. If the module can apply its policy, it sends behavior activation to
its lower modules, else the system does the same way at the higher level.

@ A target situation is specified in one state space at the bottom level.

@ List up all layers which contain the space specified as the target situation and
constructed by the complementary approach.

@ Find the lowest layer in the list.

@ Specify a target stat nearest to the target situation in the state space.
® Find a module nearest to the target state.

® Can the module executes its policy in the current situation?

YES : Activate the module to reach the target state.
NO : Find the target state on the higher layer in the list, then go to @.

If the target situation is specified in two state spaces at the bottom level, the
system searches the lowest layer which has modules managing them. Figure 5.5(b)
shows this case. The target situation is given in the two different state spaces. The
system searches a module nearest to the target situation at the second level though
there are two activated modules at the first level because the given task is specified in
the two state spaces and one layer at the second level manages them. If the module at
the second level cannot handle the situation, the system searches a module at higher
level as the proposed method in the previous chapter does.



96

CHAPTER 5.

@D A target situation is specified in the state spaces at the bottom level.
@ List up all layers which contain all space specified as the target situation.
@ Find the lowest layer in the list.

@ Specify a target state nearest to the target situation on the state space of the
layer.

® Find a module nearest to the target state.
©® Can the module executes its policy in the current situation?

YES : Activate the module to reach the target state.
NO : Find the target state on the higher layer in the list, then go to @.




SECTION 5.5. 97

5.5 Simulation Experiments

5.5.1 An Overview

Figure 5.6: A mobile robot, a ball, and a goal

To evaluate the multiplicative approach, we apply it to a simple navigation task
and shooting behavior in a computer simulation experiments. The environment con-
sists of a ball, a goal, and a mobile robot. Figure 5.6 shows a picture of the mobile
robot we designed and built, the ball, and the goal. The robot has a TV camera of
which visual angles are 35 degrees and 30 degrees in horizontal and vertical direc-
tions, respectively. The camera is tilted down 23.5 degrees to capture the ball image
as large as possible. The driving mechanism is a PWS (Power Wheeled System), and
the action space is constructed in terms of two torque values to be sent to two motors
that drive two wheels. These parameters of the system are unknown to the robot,
and it tries to estimate the mapping from sensory information to appropriate motor
commands by the method.



98 CHAPTER 5.

P Learni ng Learni ng ~

7/ ///
T T e
o i // Oos actis\elllt?(gn N

(| \
/ OO / O O OO \
/Oog ~C0n e Ho \
// go{:-_ﬂ si_?te O (| O :\ r— \\
activaiton \ N
/ Iy Hr-
// \ \ \\ \\ h Leearr}ingl . \\\
r— module
/ IE ol ] |\ AN
| H L Leérning | \\ O Ll B Cl | \\\
{ " modulel | ! N O | O O O C O CJ Eﬁatﬁ]VECt%Il’ \
| / -/ DoBgHoRotERs
state vector O -
\ for the ball = \
\ /—\
OF/0
\ OF0/F/0
Rlaisfai=icl=ls o
~_HBHO

— _—

— —

Motor Command Space

far right

Ball image
near |eft

Figure 5.7: A hierarchical architecture of learning modules



SECTION 5.5. 99

Here, we introduce a two-level learning architecture, with one higher layer and two
lower ones. The lower layers have 20 modules (10 for the ball and 10 for the goal), and
the higher layer has 2 modules (Figure 5.7). The ball and the goal state spaces are
constructed in terms of the centroid of the ball and the goal images, and tessellated
both into 9 by 9 grids. The number of representative states for each module at the
lower layer is 83; the combination of 9 by 9 of the centroid of the image, and “lost-
into-left’ and “lost-into-right” when the robot cannot capture the image of the ball
or the goal. The number of states for each module at the higher layer is 100; the
combination of 10 lower modules for the ball, and 10 lower modules for the goal. We
assign tasks (reaching the ball and the goal, lose the ball and goal into the left side,
and losing the ball and the goal into the right side) to several modules for stability
of assignment system of other modules.

For the comparison between our proposed method and a standard monolithic
learning method, we prepare two learning modules, one for reaching a ball and other
for reaching a goal. The state space of the monolithic learning module is constructed
as a combination of all ball situations and goal ones. The number of states is 6,889;
the combination of 83 states for ball situations by 83 states for goal situations.

5.5.2 Results (1: Navigation)

]
%\

O

Figure 5.8: A simulation environment

The tasks for the robot are reaching a ball and reaching a goal. At first, we prepare
a simple initial controller which forces the robot to make a round trip between a ball
and a goal. The initial controller drives the robot as following: rotate the body
until the the object comes to the center on the image, and drives it forward. At the
beginning of the learning, the robot follows the initial controller. After having some
experiences and learning the policy, it behaves by itself based on the learned policy.



100

Figure 5.9:

Figure 5.10:

CHAPTER 5.

ball goal ball
1.2 . ; : T

“ 10 |
08} |, | 1
0.6

04t |

goal state activation

850 900 950 1000 1050 1100

[

Goal state activation of modules at lower layer (ball) (navigation)

ball goal ball

1.2 . T T T

13
.'1 14 11

0.8t

0.6

goal state activation

04 |- -

850 900 950 1000 1050 1100
step

Goal state activation of modules at lower layer (goal) (navigation)



SECTION 5.5. 101

ball goal ball
1.2

08

0.6

04t

normalized state value

02} |

0 1 1
850 900 950 1000 1050 1100
step

Figure 5.11: Goal state activation of modules at higher layer (navigation)

1.2

'hierarchical syétem -
monolithic system --—-----

learned policy rate (100/100)

0 5000 10000 15000 20000

step

Figure 5.12: Learned policy following rate (navigation)



102 CHAPTER 5.

Figures 5.9 and 5.10 show the time development of the goal state activations of
the learning modules at the lower layers of the ball navigation and the goal one,
respectively. The robot goes from the ball to the goal in the period during the 860
th and the 975 th steps, and goes to the ball again in the period during the 975 th
and the 1,080 th steps. We can see each learning module assigned its own goal state
and has high activation when the situation is near to the goal state. For example,
module 1 assigned its goal state to the situation nearest to the ball, and module 11
assigned its goal state to the situation nearest to the goal. The others assigned their
goal states to other situations.

Figure 5.11 shows the time development of the goal state activations of both
learning modules at the higher layer. Figure 5.12 shows the time development of
the learned policy following rate. The learned policy following rate means the rate
of action which follows the learned policy in the last 100 steps. The robot used the
initial controller at the beginning of the learning, and it switched its controller from
the initial one to the learned one. The hierarchical learning system obtained the valid
policy much faster than the monolithic system.

5.5.3 Result (2: Shooting Behavior)

Next, the task for the robot is to shoot a ball into the goal. Figures 5.13 and 5.14
show the time development of the normalized state values of learning modules at the
lower layer. When the simulation started, the robot went to the ball and kicked the
ball at the 58th step. Then, it followed the ball after that and shot the ball into the
goal at the 105th step.

Figure 5.15 shows the time development of the following rates of the learned policy
. There are three lines in the figure; they are the rates of hierarchical system with
experience, hierarchical system without experience, and monolithic system, respec-
tively. The experience means that the hierarchical system reused the lower modules
which have been obtained in the learning time of the simple navigation task 5.5.2.
The figure shows that the hierarchical learning system obtained the valid policy much
faster than the monolithic system, and the system obtained the valid policy faster
than the other hierarchical system without experiences.



SECTION 5.5.

Figure 5.13: Goal state activation of modules at lower layer (ball) (shooting)

Figure 5.14: Goal state activation of modules at lower layer (goal) (shooting)

goal state activation

goal state activation

1.2

08 |

0.6 |

04

0.2}

1.2

step

103



104 CHAPTER 5.

1.2 T

T

T T T T T
_ hierarchical system with experience
hierarchical system without experience -
__monolithic system -
. |

0.8 r

0.6

04 r

0.2

0 ! 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 5.15: The following rate of the learned policy (shooting)

5.6 Real Robot Experiments

5.6.1 An Overview

To evaluate the proposed method, we apply it to a task of shooting a ball into a
goal. Figure 5.16 shows a picture of the mobile robot we designed and built, the
ball, and the goal. Figure 5.17 shows an overview of the robot system. It has two
TV cameras; One with wide-angle lens of which visual angles are 35 degrees and
30 degrees in horizontal and vertical directions, respectively. This camera is tilted
down 23.5 degrees to capture the ball image as large as possible. The other with
omni-directional mirror is mounted on the robot. The driving mechanism is a PWS
(Power Wheeled System), and the action space is constructed in terms of two torque
values to be sent to two motors that drive two wheels. These camera and kinematic
parameters of the system are unknown to the robot, and it tries to estimate the
mapping from sensory information to appropriate motor commands by the method.
The environment consists of a ball, a goal, and the mobile robot. The target situation
is given by reading the sensor information when the robot pushes the ball into the
goal; the robot captures the ball and the goal at the center bottom of the perspective
camera image.



SECTION 5.6. 105

Figure 5.16: A mobile robot, a ball and a goal

The state spaces at the bottom layers are constructed in terms of the centroids
of a ball and a goal images of the two cameras and the perspective image and omni-
directional one are tessellated into 11 by 21 grids and 15 by 15 grids, respectively.
The action space is constructed in terms of two torque values and is tessellated into
5 by 5 grids. The representative state and action at the higher layer is constructed
by the learning modules automatically assigned at the lower layer.

We construct the hierarchical structure as shown in Figure 5.18. At the lowest
level, there are four learning layers, and each of them deals with its own logical
sensory space (ball positions on the perspective camera image and omni one, and goal
position on both images). At the second level, there are three learning layers in which
one adopts the multiplicative approach and the others adopt the complementary
approach. The multiplicative approach of the “ball pers.xgoal pers.” layer deals
with lower modules of “ball pers.” and “goal pers.” layers. The arrows in the figure
indicate the flows from the goal state activations to the state vectors. The arrows
from the action vectors to behavior activations are eliminated. At the third level, the
system has three learning layer in which one adopts the multiplicative approach and
the others adopt the complementary approach, again. At the levels higher than third
layer, the learning layer is constructed as described in the previous chapter.



106 CHAPTER 5.

——————————————————————————————————————————————————————————————

Omni-directional PC
mirror :

(Pentium MMX 233MHz)

Camera

@ - Camera
\ ) \—|; Image Processing PCI

Board (IP5000)

Image Processing

yasu4 Board (IP5000)
ISA
UPP| RIF
Motor Motor

Driver .| wireless LAN

Figure 5.17: An overview of the robot system

5.6.2 Results

The experiment is constructed with two stages, one is the learning stage and other
the task execution one using the learned policies. First of all, the robot moved at
random in the environment for about two hours.

After the learning stage, we let our robot do a couple of tasks. One is shooting
a ball into the goal using this multi-layer learning structure. The target situation
is given by reading the sensor information when the robot pushes the ball into the
goal; the robot captures the ball and goal at center bottom in the perspective camera
image. As an initial position, the robot is located far from the goal, faced opposite
direction to it . The ball was located between the robot and the goal.

Figure 5.20 shows the time development of the goal state and behavior activations
of learning modules at the first, the second, and the third levels while the robot shoots
the ball into the goal. The arrows on the top of each series indicate the behavior
activations, and the others indicate the goal state activation. Figure 5.21 shows the
sequence of the behavior activation of learning modules and the commands to the
lower layer modules. The down arrows indicate that the higher learning modules fire
the behavior activations of the lower learning modules.

When the robot located at the initial position, the module 8 in the “ball omni”
layer and the module 12 in the “goal omni” layer at the first level has high goal
state activations. “ball pers.” layer and “goal pers.” layer at the first level have no



SECTION 5.6. 107

ball x goal
} o

goa pers.+omni

13rd
Jevel

(LM)o{(LMP

ball pers+omniJ ball x goal )

(LM) o000 000 }

=00 pers tomni)———
mmmooo M) |(CM)o0 (M) (Moo [LM)

2nd
level

1st
level

‘ \
B T
' P
- t
\ '
v

Ball image Ball image Goal image God image
omni camera  perspective camera  perspectivecamera  omni camera

Figure 5.18: A hierarchy architecture of learning modules

activated modules because the robot does not capture the ball or the goal with the
perspective camera. When the robot located at the target position, the module 0 at
all layers are near to their own goal states. The robot turns its body until 20 steps
in order to capture the ball and goal with the perspective camera, and it dribbles the
ball, then finally shoots it into the goal.

Figure 5.21 shows the transition of the activated modules and the commands to
the lower layer on the multi-layer learning system. First of all, the system tried to
activate the module 0 of “ball pers.x goal pers.” layer at the second level, however,
the module could not manage the current situation because the robot doesn’t capture
the ball and the goal with the perspective camera. Then, the system tried to activate
the module 0 of “ballx goal’ layer at the third level, and this module activates the
module 1 of “goal pers.+omni’ layer and the module 0 of “ball pers.+omni’ layer at
the second level, sequentially. These modules at the second level activate adequate
modules at the first level. When the module 0 of “ball pers.x goal pers.” layer at the
second level is able to handle the situation, the module takes over all control of the
robot. Sometimes the module 0 of “ballx goal” layer at the third level is activated
when the module “0” of “ball pers.xgoal pers.” layer at the second level cannot



108 CHAPTER 5.

handle the situation because the robot bumped the ball and the situation changed
drastically. Finally, the module 0 of “ball pers.x goal pers.” layer at the second level
leads the robot to the target situation in which the robot is capturing the ball and
the goal at center bottom of the perspective camera image.

5.6.3 Discussion

We verify the three advantages of multi-layered learning system which are described
in 5.1..

@ The system has a capability of behavior acquisition based on new state
features by adding new learning modules layers based on them while it
leaves the already learned hierarchical structure when it encounters new
state features

We prepared the hierarchical structure as shown in Figure 5.18, here. In the case
the robot perceives only a ball in the environment, the system trains the learning
modules on the left side of the hierarchical structure shown in Figure 5.18; the “ball
pers.” and “ball omni” layers at the first level, the “ball pers.+omni” layer at the
second level, and the “ball pers.+omni” layer at the third level. Then, the system
acquires a behavior of the ball reaching.

On the other hand, in the case the robot perceives goals in the environment, the
system adds and trains the learning modules on the right side of the hierarchical
structure shown in Figure 5.18; the “goal pers.” and “goal omni” layers at the first
level, the “goal pers.+omni” layer at the second level, and the “goal pers.+omni”
layer at the third level. Then, the system acquires several behaviors of the navigation
based on the goals.

@ The system acquires behaviors based on state space constructed with
a large number of state valuables by merging the modules at the lower
levels which acquire behaviors based on subspaces.

While there is no module which handles both the ball and the goals at the fist
level, “ball pers.x goal pers” layer at the second level, “ballx goal” layer at the third
level, and “ballx goal” layer at the fourth level can handle the both simultaneously,
and acquired the shooting behavior through its experiments.

In the 5.5, we have shown that the system with already acquired ball and goal
reaching behavior learns the shooting behavior much more efficiently than the system
which begins the learning from a scratch.

@ The system saves computational resources because the number of
state could be small by decomposing the whole state space into small



SECTION 5.6. 109

subspaces

Table 5.1: Required memory size for the proposed layered learning system

level layer # of states # of actions Q table size # of modules memory size
A B C=AxB D CxD
ball pers. 231 25 5,775 25 144,375
1 ball omni. 225 25 5,625 18 101,250
goal pers. 231 25 5,775 24 138,600
ball omni. 225 25 5,625 23 129,375
ball pers.4+omni. 43 43 1,849 9 16,641
2 goal pers.+omni. 47 47 2,209 9 19,881
ball pers. x goal 600 49 29,400 65 1,911,000
pers.
ball pers.+omni. 9 9 81 1 81
3 goal pers.+omni. 9 9 81 1 81
ball x goal 81 18 1,458 15 21,870
4 ball x goal 15 15 225 8 1,800
] sum total | 193 | 2,465,073 |

Table 5.2: Required memory size for the layered learning system with monolithic

state and action spaces

level layer # of states # of actions Q table size # of modules memory size
A B C=AxB D C x D
1 full state-action 207,936 25 5,198, 400 104 10t
full state-action 104 10 108 103 101t
full state-action 108 108 106 102 108

full state-action

] total | 10* | 10" |

We show that the proposed multi-layered system needs much less memory re-
sources than the conventional monolithic one. Table 5.1 shows the number of states,
the number of action, the size of )-table, the number of assigned modules, and the
requisite memory size for the layer when our method is applied. Table 5.2 shows the
expected data for the conventional monolithic system. The data indicateds approxi-
mated numbers because it is difficult to implement the monolithic system to the real
robot.

Our proposed method needs only several hundreds orders of states, and several
hundred thousands order of memory for all learning modules at the first level because
the state space is divided into several subspaces. On the other hand, the system



110 CHAPTER 5.

with the monolithic state-action space needs hundred thousands order of states, and
the one learning modules needs several millions oder of computational memory. We
assume that the system would assign about 1/10 learning modules than the number
of states. The table shows that both systems need much computational resources at
the second level. The total orders of memory size in this experiments are 10° and
10! for proposed method and the conventional approach, respectively. The required
computational resources reduced drastically.

5.7 Discussions

We proposed a mechanism which constructs multiple configurations of learning mod-
ules at higher layers using a number of groups of modules at lower layers. We applied
the method to a simple soccer situation in the context of RoboCup, showed the ex-
perimental results.

The current system needs the learning layer construction by the programmer.
Further, the current method has focused on the state space hierarchy, but the idea
of hierarchy construction seems applicable to the action space hierarchy, too. These
are our future works.

When the system applies the multiplicative approach to merge two state spaces
of which state transitions may depend on each other, an interference problem would
occur. For example, there are two lower layers which are basically independent of each
other. The modules at the higher layer with state space constructed by multiplicative
approach with these two layers, activates one module from both lower layers. If the
higher modules activates one module of a certain lower layer, the behavior of the
activated module might influence the situations of the other lower layer. The higher
modules would not be able to acquire purposive behaviors if the interference occurs
frequently. If the resolution of state and action spaces constructed by multiplicative
approach are fine, the reinforcement learning method can find the indirect route to
the target situation.



SECTION 5.7. 111

Figure 5.19: A sequence of a shooting behavior and its camera images



112 CHAPTER 5.

.W 0.0

ball x goal?
0

50

00
Step 150 200

(a) third layer

ballpers. 7\ 10O \,
Jper [ .ﬁ “‘”‘Fr\:"uj '\l”ﬁ N ﬁ,\“
—) | q = i |

|

Step 150

200

(b) second layer

115370 8000 —r

,’“«m/v \

(b) first layer

Figure 5.20: A sequence of the goal state activation and behavior activation of learning
modules



SECTION 5.7. 113

3rd
ball pers. l level
god pers.
l();oal
or'%rni 9
[
ball |
PErs. 2nd
omni

i I

0 50 100
sep 150

200

Figure 5.21: A sequence of the behavior activation of learning modules and the com-
mands to the lower layer modules






Chapter 6

Conclusions and Future Works

The purpose of our study is to develop methods for an autonomous robot with learning
capability of knowledge and behaviors through the interaction between the robot and
the environment within a reasonable learning time with human designer’s help as
little as possible. We put focus on reinforcement learning as a method for behavior
learning with little or no a priori knowledge and higher capability of reactive and
adaptive behaviors.

However, the reinforcement learning methods have one critical disadvantage, that
is, lack of the scalability. The motivation of our study is to extend the scalability in
applying reinforcement learning methods to real autonomous robots.

We found that there are two major approaches to solve lack of the scalability; one
is keeping the state and action space small enough, and the other is an introduction
of hierarchy and multi-module architecture. Both approaches have the same essential
issue of the state and action space construction.

The objective of this dissertation is to show ideas on the state and action space
construction in single and multi-layered learning systems and the concrete models of
the hierarchical control system for autonomous robot, and verify them through the
real robot experiments.

In chapter 3, we proposed a method by which a robot learns purposive behavior
within less learning time by incrementally segmenting the sensor space based on the
experiences of the robot. The incremental segmentation is performed by constructing
local models in the state space, which is based on the function approximation of the
sensor outputs to reduce the learning time and the reinforcement signal to emerge
a purposive behavior. We applied the idea to a soccer robot which tries to shoot a
ball into a goal. The experiments with computer simulations and a real robot were
shown. As a result, our real robot has learned a shooting behavior within less than

115



116 CHAPTER 6.

one hour training by incrementally segmenting the state space.

In chapter 4, we proposed a method by which a hierarchical structure for behavior
learning is self-organized. The modules in the lower networks are organized as experts
to move into different categories of sensor output regions and learn lower level behav-
iors using motor commands. In the meantime, the modules in the higher networks
are organized as experts which learn higher level behavior using lower modules. Each
module assigns its own goal state by itself. We applied the method to a simple soccer
situation in the context of RoboCup, and showed the experimental results.

In chapter 5, we proposed an approach to the problem of decomposing the large
state space at the bottom level into several subspaces and merging those subspaces
at the higher level. This allows the system

e to acquire behaviors based on new state features by adding new learning mod-
ules layers based on them while it leaves the already learned hierarchical struc-
ture,

e to acquire behaviors based on state space constructed with a large number
of state valuables by merging the modules at the lower levels which acquire
behaviors based on subspaces, and

e to save computational resources because the number of state could be small by
decomposing the whole state space into small subspaces.

We apply the method to a simple soccer situation in the context of RoboCup, and
showed the experimental results.
As future works, there are a number of approaches to extend our current methods.

Integration with forward model We have adopted a direct reinforcement learn-
ing (Q-learning) method with no explicit model through our works to keep our
points on the research simple. However, it seems obvious that the world model
will help the learning system to acquire the optimal policy, and there are a num-
ber of studies which utilized this model. Sutton [58, 57, 59, 56] has proposed
DYNA-architectures which integrate world model learning and execution-time
planning. Atkeson and Santamaria [8] has shown that a model-based reinforce-
ment learning is more data efficient and found better policies than a direct
reinforcement learning. Generally speaking, the model-based learning system
shows good performance though it needs rather computational resources.

Advanced mechanism for self-organization of hierarchy We proposed two ap-
proaches of state and action space construction; “multiplicative approach” and
“complementary approach”. However, we still needs a mechanism which en-
able the system to select layers to be combined, to judge which approach is



117

suitable, in order to develop various kinds of purposive behaviors. The follow-
ing mechanism is considered to be adopted. One of the traditional stochastic
methods identifies whether the layers are independent from each other or not.
If the layers are independent from each other, the system apply “multiplicative
approach”. Else, it applies “complementary approach”.

Implementation for Multi-modal sensor devices and actuators We have de-
veloped a series of vision based mobile robots. Their sensing devices are based
on only vision system with a perspective camera and a camera with an omni-
directional mirror, and the robots have wheel based locomotion devices. They
can load some kinds of alternative sensing devices, such as touch sensors, prox-
imity sensors (infra-red sensor, or ultra sonic sensor), relatively longer distance
sensor (laser range sensor), and so on. It can also attach alternative actuators,
such as object manipulators and ball kicking devices. There are obviously in-
teresting and challenging issues in integration of multi-modal sensory devices
and many DOF's to generate various kinds of behaviors.

Introduction of a Top-down Approach We have developed a method of bottom
up approach. We may include a top-down approach in our method. The mod-
ules of higher layer can advice the system to create lower layer with more fine
state space in the case the policy acquisitions of the higher layer would not work
because of the interference between lower layer modules mentioned in 5.7.






Bibliography

1]

J. S. Albus. Data storage in the cerebellar model articulation controller (cmac).
Journal of Dynamic Systems, Measurement, and Control, Trans. ASME, Vol. 97,
No. 3, pp. 227233, 1975.

J. S. Albus. A new approach to manipulator control: The cerebbellar model
articulation controller (cmac). Journal of Dynamic Systems, Measurement, and
Control, Trans. ASMFE, Vol. 97, No. 3, pp. 220-227, 1975.

James S. Albus. The engineering of mind. In Proceedings of the Fourth In-
ternational Conference on Simulation of Adaptive Behavior (From Animals to
Animats 4), pp. 23-32. MIT Press, 1996.

M. Asada, S. Noda, S. Tawaratumida, and K. Hosoda. Purposive behavior
acquisition for a real robot by vision-based reinforcement learning. Machine
Learning, Vol. 23, pp. 279-303, 1996.

Minoru Asada, Shoichi Noda, and Koh Hosoda. Non-physical intervention in
robot learning based on lfe method. In Proc. of Machine Learning Conference
Workshop on Learning from Examples vs. Programming by Demonstration, 1995.

Minoru Asada, Shoichi Noda, and Koh Hosoda. Action-based sensor space cate-
gorization for robot learning. In Proceedings of the 1996 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vol. 3, pp. 1502-1509, 1996.

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. Vision-
based reinforcement learning for purposive behavior acquisition. In Proceedings
of 1995 IEEE International Conference on Robotics and Automation, Vol. 1, pp.
146-153, 1995.

Chirstopher G. Atkeson and Juan Carlos Santamaria. A comparison of direct
and model-based reinforcement learning. In International Conference on Robotics
and Automation, 1997.

119



120

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

BIBLIOGRAPHY

Justin Boyan and Andrew Moore. Generalization in reinforcement learning:
Safely approximating the value function. In Proceedings of Neural Information
Processings Systems 7. Morgan Kaufmann, January 1995.

R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, Vol. 2, No. 1, pp. 14-23, 1986.

Rodney Allen Brooks. Cambrian Intelligence. MIT Press, July 1999.

M. Carreas, J. Batlle, and P. Ridao. Hybrid coordination of reinforcement
learning-based behaviors for auv control. In Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1410-1415,
Maui, Hawai, USA, Oct. 2001.

David Chapman and Leslie Pach Kaelling. Input generalization in delayed rein-
forcement learning: An algorithm and performance comparisons. In AAAI'91,
pp- 726-731, 1991.

C.J.C.H.Watkins. Learning from delayed rewards. PhD thesis, King’s College,
University of Cambridge, May 1989.

Jonalthan H. Connell and Sridhar Mahadevan. ROBOT LEARNING. Kluwer
Academic Publishers, 1993.

Jonathan H. Connell and Sridhar Mahadevan. Rapid task learning for real robots.
In ROBOT LEARNING, chapter 5, pp. 105-140. Kluwer Academic Publishers,
1993.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In
Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in
Neural Information Processing Systems, Vol. 5, pp. 271-278. Morgan Kaufmann,
San Mateo, CA, 1993.

Bruce L. Digney. Emergent hierarchical control structures: Learning reac-
tive/hierarchical relationships in reinforcement environments. In Pattie Maes,
Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W. Wilson,
editors, From animals to animats 4: Proceedings of The fourth conference on the
Stmulation of Adaptive Behavior: SAB 96, pp. 363-372. The MIT Press, 1996.

Bruce L. Digney. Learning hierarchical control structures for multiple tasks and
changing environments. In Rolf Pfeifer, Bruce Blumberg, Jean-Arcady Meyer,
and Stewart W. Wilson, editors, From animals to animats 5: Proceedings of The



BIBLIOGRAPHY 121

[20]

23]

[24]

[25]

fifth conference on the Simulation of Adaptive Behavior: SAB 98, pp. 321-330.
The MIT Press, 1998.

Kenji Doya. Temporal difference learning in continuous time and space. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing System 8, pp. 1073-1079. MIT Press, Cambridge, MA,
1996.

Kenji Doya. Efficient nonlinear control with actor-tutor architecture. In M. C.
Mozer, M. 1. Jordan, and T. Petsche, editors, Advances in Neural Information
Processing Systems 9, pp. 1012-1018. MIT Press, Cambridge, MA, USA, 1997.

Kenji Doya, Kazuyuki Samejima, Ken ichi Katagiri, and Mitsuo Kawato. Mul-
tiple model-based reinforcement learning. Technical report, Kawato Dynamic
Brain Project Technical Report, KDB-TR-08, Japan Science and Technology
Corporation, June 2000.

Artur Dubrawski and Patrick Reignier. Learning to categorize perceptual
space of a mobile robot using fuzzy-art neural network. In Proceedings of
the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems,
Vol. 2, pp. 1272-1277, September 1994.

Teruo Fujii, Yoshikazu Arai, Hajime Asama, and Isao Endo. Multilayered rein-
forcement learning for complicated collision avoidance problems. In Proceedings
of the 1998 IEEFE International Conference on Robotics and Automation, pp.
2186-2198, 1998.

Masahiko Haruno, Daniel M. Wolpert, and Mitsuo Kawato. Multiple paired
forward-inverse models for human motor learning and control. Advances in Neu-
ral Information Processing Systems, Vol. 11, pp. 31-37, 1999. MIT Press, Cam-
bridge, Massachusetts.

Masahiko Haruno, Daniel M. Wolpert, and Mitsuo Kawato. Mosaic model for
sensorimotor learning and control. Neural Computation, Vol. 13, pp. 2201-2220,
2001.

Yasuhisa Hasegawa and Toshio Fukuda. Learning method for hierarchical be-
havior controller. In Proceedings of the 1999 IEEE International Conference on
Robotics and Automation, pp. 2799-2804, 1999.

Yasuhisa HASEGAWA, Hiroaki TANAHASHI, and Toshio FUKUDA. Behavior
coordination of brachation robot based on bahavior phase shift. In Proceedings of



122

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

BIBLIOGRAPHY

the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vol. CD-ROM, pp. 526-531, 2001.

Long ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, Vol. 8, pp. 293-321, 1992.

Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary
results. In Proceedings of the Tenth International Conference on Machine Learn-
ing, 1993.

Leslie Pack Kaelbling. Learning to achieve goals. In Proceedings of the Thirteenth
International Joint Conference on Artificial Inteligence, 1993.

Ben J. A. Krose and Joris W. M. van Dam. Adaptive state space quantization
for reinforcement learning of collision-free navigation. In Proceedings of the 1992
IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2,
pp. 1327-1331, 1992.

Sridhar Mahadevan and Jonathan Connel. Scaling reinforcement learning to
robotics by exploiting the subsumption architecture. In Proceedings Eighth In-
ternational Workshop on Machine Learning, 1991.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of behavior-
based robots using reinforcement learning. In AAAI-91, Vol. 2, pp. 768-773,
1991.

Andrew Kachites McCallum. Learning to use selective attention and short-term
memory in sequential tasks. In Proceedings of the fourth International Conference
on Simulation of Adaptive Behavior (From animals to animats 4), pp. 315-324,
1996.

R. Andrew McCallum. Reduced training time for reinforcement learning with
hidden state. In The Proceedings of the Eleventh International Machine Learning
Workshop (Robot Learning), 1994.

R. Andrew McCallum. Instance-based utile distinctions for reinforcement learn-
ing with hidden state. In Armand Prieditis and Stuart Russell, editors, The
Twelfth Internationa Conference on Machine Learning, pp. 387-395, Tahoe City,
California, July 1995.

Takahashi Minato and Minoru Asada. Environmental change adaptation for
mobile robot navigation. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1859-1864, 1998.



BIBLIOGRAPHY 123

[39]

[40]

[43]

[44]

[45]

[48]

A. Moore. Variable resolution dynamic programiming: efficiently learning action
maps in multivariate real-values state spaces. In Proceedings Eighth International
Workshop on Machine Learning, 1991.

Andrew W. Moore and Christopher G. Atkeson. The parti-game algorithm for
variable resolution reinforcement learning in multidimensional state-spaces. Ma-
chine Learning, Vol. 21, pp. 199-233, 1995.

Jun Morimoto and Kenji Doya. Hierarchical reinforcement learning of low-
dimensional subgoals and high-dimensional trajectories. In The 5th International
Conference on Neural Information Processing, Vol. 2, pp. 850-853, 1998.

Rémi Munos and Jocelyn Parinel. Reinforcement learning with dynamic cover-
ing of state-action space : Partitioning g-learning. In Proceddings of the Third
International Conference on Simulation of Adaptive Behavior (From Animals to
Animats 3), pp. 354-363, 1994.

N. Ono and K. Fukumoto. Multi-agent reinforcement learning: A modular ap-
proach. In Proceedings of the 2nd International Conference on Multi-agent Sys-
tems (ICMAS-96). AAAI Pres, 1996.

N. Ono and K. Fukumoto. Learning to coordinate in a continuous environment.
In Distributed Artificial Intelligence Meets Machine Learning: Learning in Multi-
agent Environments, pp. 73-81. Springer-Verlag, g. weiss edition, 1997.

N. Ono and K. Fukumoto. A modular approach to multi-agent reinforcement
learning. In Distributed Artificial Intelligence Meets Machine Learning: Learning
in Multi-agent Environments, pp. 25-39. Springer-Verlag, g. weiss edition, 1997.

Fuminori Saito and Toshio Fukuda. Learning architecture for real robot systems
{ extension of connectionist Q-learning for continuous robot control domain }. In
Proceedings of IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 27-32,
1994.

Fuminori Saito and Toshio Fukuda. Two-link-robot brachiation with connection-
ist g-learning. In Proceedings of the third international conference on simulation
of adaptive behavior (From animals to animats 3), pp. 309-314. The MIT Press,
1994.

Juan C. Santamaria and Ashwin Ram Richard S. Sutton. Experiments with rein-
forcement learning in problems with continuous state and action spaces. Adaptive
Behavior, Vol. 6, No. 2, pp. 163-217, 1998.



124

[49]

[50]

[51]

[52]

[53]

[55]

[56]

[57]

[58]

[59]

BIBLIOGRAPHY

Ritsuko Sato, Hiroshi Ishiguro, and Toru Ishida. Robot oriented state space con-
struction based on sensor data analysis. In §th SICE Symposium on Decentralized
Autonomous Systems, pp. 111-119, Tokyo, January 1996.

Satinder P. Singh. The effeicient learnig of multiple task sequences. In Neural
Information Processing Systems 4, pp. 251-258, 1992.

Satinder P. Singh. Reinforcement learning with a hierarchy of abstract models.
In National Conference on Artificial Intelligence, pp. 202-207, 1992.

Satinder Pal Singh. Scaling reinforcement learning algorithms by learning vari-
able temporal resolution models. In Proceedings of the Ninth International Con-
ference on Machine Learning, pp. 406-415, 1992.

Satinder Pal Singh. Transfer of learning by composing solutions of elemental
sequential tasks. Machine Learning, Vol. 8, pp. 323-339, 1992.

Peter Stone and Mamuela Veloso. Layered approach to learning client behaviors
in the robocup soccer server. Applied Artificial Intelligence, Vol. 12, No. 2-3,
1998.

Peter Stone and Manuela Veloso. Team-partitioned, opaque-transition reinforce-
ment learning. In M. Asada and H. Kitano, editors, RoboCup-98: Robo Soccer
World Cup II, pp. 261-272. Springer Verlag, Berlin, 1999.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Seventh
Internation