
Cooperative Behavior based on a Subjective Map with Shared
Information in a Dynamic Environment

Noriaki Mitsunaga∗†, Taku Izumi∗, and Minoru Asada∗†
{mitchy,izumi}@er.ams.eng.osaka-u.ac.jp asada@ams.eng.osaka-u.ac.jp

*Dept. of Adaptive Machine Systems, † Handai Frontier Research Center,
Graduate School of Engineering, Osaka University

Abstract

This paper proposes a subjective map representation
that enables a multiagent system to make decisions in
a dynamic, hostile environment. A typical situation
can be found in the Sony four-legged robot league of
the RoboCup competition [1]. The subjective map is
a map of the environment that each agent maintains
regardless of the objective consistency of the repre-
sentation among the agents. Owing to the map’s
subjectivity, it is not affected by incorrect informa-
tion belonging to other agents. For example, it is
not affected by non-negligible errors caused by dy-
namic changes in the environment, such as falling
down or being picked up and brought to other places
by the referee. A potential field is defined on the sub-
jective map in terms of subtasks, such as approaching
and shooting the ball, and the field is dynamically up-
dated so that the robot can decide what to do next.
This methods is compared with conventional methods
that involve sharing or not sharing information.

1 Introduction

In a multi-robot system, communication is expected
to help robots acquire knowledge about the environ-
ment. Robots require a common reference coordi-
nate system to exchange information about the en-
vironment. A world coordinate system is such an ex-
ample. To convert the observation results to world
coordinates, each robot has to localize itself. Assum-
ing that localization errors are negligible, Stroupe et
al. [2] proposed to use a robot, which has localized,
as a landmark for localization of other robots. How-
ever, localization errors often become too large to
ignore.

Means of localizing robots and acquiring their spa-
cial configuration through their sharing of informa-
tion have been proposed [3, 4]. They use geometric
constraints between several robots. Robots simulta-
neously observe each other, search their spatial con-
figurations, which satisfy the constraints of the trian-

gle formed by their positions, and share the map of
the environment. For global localization, one robot’s
position is used as the base, then localization errors
do not influence information exchange, but depend
on the self-localization of the base robot. To ob-
serve several robots at a glance, they used omnidi-
rectional cameras rather than normal cameras with
limited viewing angles. However, there will be many
situations in which robots using conventional cam-
eras will not be able to observe other robots. Then
it becomes difficult to use such methods.

Although beliefs and a probabilistic representation
of self-location is commonly used to cope with self-
localization error, it is difficult to obtain an accurate
model for merging the maps of several robots and
maintaining the merged map. A simple weighted av-
erage of the information from each robots may work
when the errors are small. However, when one of the
robots has a large error in its self-localization, it will
affect the shared map used by all other robots. It is
difficult to design weights or accuracy measurements
to prevent this because there are always errors that
the designer cannot anticipate, and in many situa-
tions the robot cannot detect these errors.

We propose an approach that uses subjective maps
instead of a shared map. A subjective map is for
a robot in a multiagent system to make decisions
in a dynamic, hostile environment. The subjective
map is maintained by each robot regardless of the
objective consistency of representations among the
other robots. Owing to its subjectivity, incorrect in-
formation belonging to other agents does not affect
the method. For example, accidents or other non-
negligible changes in the environment do not affect
the map. A potential field is defined on the subjec-
tive map in terms of subtasks, such as approaching
or shooting the ball, and the field is dynamically up-
dated so that the robot can decide what to do next.
The methods is compared with methods that involve
sharing or not sharing and then future issues are dis-
cussed.



2 The generation of the subjective map

In a robot soccer task, there are teammate and op-
ponent robots, a ball, and some landmarks. A robot
can discriminate teammates and opponents but can-
not identify them. Each robot does the following:

1. localize itself,

2. estimate the location of the ball, the teammates,
and the opponents in global coordintes, if it ob-
serves any of them,

3. broadcast the results of its localization and esti-
mated locations of the above to its other team-
mates,

4. recieve messages from teammates,

5. construct its subjective map,

(a) if both the robot and its teammate observe
the ball, it shifts the locations sent by the
teammate based on the ball location and
adds it to its subjective map,

(b) in other cases, the robot just adds objects,
including its teammate, which it does not
observe currently, to its subjective map,
and

6. calculate the potential field and determine its
action.

Here, we show an example of a subjective map.
We assume that there are two robots (robot A and
robot B) and a ball in the environment. These robots
have localized themselves, and they are watching the
ball, but they cannot observe each other owing to
their limited viewing angles (Fig. 1). If we ignore
the localization errors and put observations onto a
map, the ball positions from two robots may not co-
incide with each other as shown in Fig. 2(a).

If we use the weighted average of the ball location
x̂ball,

x̂ball =
BσAxball + Aσball

Axball

Aσball + Bσball
, (1)

where ixj and iσj denote a position and its devia-
tion of the object j estimated by the robot i assuming
a Gaussian distributions of the position error. ˆ in-
dicates that it is the result of information sharing.
Then, we have a map shown in Fig. 2(b). The ball
position is unified in this map. However, this may
not be the true position. Further, when robot A has
a sufficiently correct estimation but robot B does not,
robot A’s estimation becomes worse because of the
information sharing. Also there are cases in which
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Figure 1: There are two robots watching the ball.

the relative position of the robot itself is more impor-
tant than its absolute position in the world coordi-
nate system. Moreover, it becomes more complicated
when the robots can observe each other. If we can
assume that the simultaneous observations from sev-
eral robots are available, then we could use a kind of
geometrical constraint, such as the one used by [3, 4].
For moving robots that have cameras with limited
viewing angles, this assumption does not hold.

We propose that each robot believes its observations,
constructs its subjective map, and determines its ac-
tion based on it. For example, robot A believes its
observation about the ball and calculates the posi-
tion of robot B from the relative position between
the ball and robot B as,

ˆAxA = AxA, (2)
ˆAxball = Axball, (3)
ˆAxB = BxB + (Axball −B xball). (4)

Figs. 2 (c) and (d) show the subjective maps of robots
A and B. With these subjective maps, although re-
duction of the localization error is not achieved, the
localization error of robot B does not affect robot A,
and robot A can use the information from robot B.
The subjective map method is expected to work for
tasks in which relative positions are more important
than absolute positions and in which localization er-
rors sometimes become large, and may not satisfy
geometrical constraints.

3 A potential field for decision making

We define a potential field based on a subjective map
of a robot for the experiment we show in the next
section. Each robot calculates the field from the map
and decides its action based on the field. A robot has
four actions: move forward, turn left, turn right, and
shoot the ball. If the ball is far from the robot, it
takes an action that climbs the potential field, and
shoots the ball at the opponent goal.

The potential field V (x, y) of robot i consists of three
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Figure 2: Constructed maps based on the assump-
tion of no localization errors, with averaged locations,
and subjective maps of robots A and B
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Figure 3: True object locations

potentials. One is VT , which is a function of the posi-
tion of a teammate j, ixTj . The second is VO, which
is a function of the position of an opponent k, ixOk.
The last one is VB , which is a function of the ball
position ixball. All the positions are derived from its
subjective map. In the following, we give example
potentials based on the setup shown in Fig. 3.

Potentials by a teammate VT and an opponent VO

are calculated by

VT (x) = −
∑

j(j 6=i)

f(x, ixTj , σT ), (5)

VO(x) = −
∑

k

f(x, ixOk, σO), (6)

(a) VT of robot A (b) VO of robot A

ball position

(c) VB of robot A,
highest at sup-
port position

ball position

(d) VB of
robot B, highest
at the ball

(e) final potential
field of robot A

(f) final potential
field of robot B

Figure 4: Potential fields of robots.

f(x, x̄,σ) =
1

2πσxσy
e
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2 ·
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)2

+
(

y−ȳ
σy

)2
)
.(7)

These potentials are for avoiding robots in the field.
Figs. 4 (a) and (b) show the VT and VO of robot A
in the example setup.

The potential from the ball is defined so that the
robot that is closest to the ball can reach it, and
the other robots can go to positions where they can
back up the shoot. The potential function of robot i
is switched depending on whether i is closest to the
ball or not,

VB(x) =
{

f(x, ixball,σball) (i is closest),
f(x, ixsup, σsup) (otherwise), (8)

where ixsup is the support position. It is defined as



(a) robot (b) field

Figure 5: The robot and the field for the RoboCup
2002 Sony four-legged robot league.

ixsup =
(
ixball + xG

)
/2, where xG is the position

of the target goal. The example potentials of robots
A and B are shown in Figs. 4 (c) and (d). Final
potential fields are shown in Figs. 4 (e) and (f).

4 The experiments

We used the competition field and the robots for
RoboCup Sony four-legged robot league 2002 (Fig. 5)
for the experimental setup. In the environment there
are six landmark poles, two goals that can be used
for self-localization, and one ball. The task is to
shoot the ball into the goal. Owing to inadequate
lighting conditions and the low resolution of the cam-
era, it was not possible for the robots to stably de-
tect each other in their local vision systems. The
self-localization program is based on Carnegie Melon
University’s CM-Pack’01 [5]. Their multi-hypothesis
approach tracks its position by means of a Kalman-
filter, starting from different initial positions in the
field. To verify the method, we put a color marker on
the back of each robot and used an overhead camera
to measure the position of the robots and the ball.

We used two robots A and B and compared the de-
cisions of robot A with the following methods,

[I] robots do not share the information;

[II] robot B sends the information to robot A, and
robot A uses the shared map constructed by tak-
ing the average of the ball position; and

[III] robot B sends the information to robot A, and
robot A uses its subjective map (proposed).

We counted the number of times that the decision of
robot A was identical to the decision when robot A
is given the location of itself, robot B, and the ball

target goal

ball

robotA robotB

(a) case 1

target goal

ball
robotA

robotB

(b) case 2

target goal

ball

robotA

robotB

(c) case 3

Figure 6: The initail conditions of experiments.

by an overhead camera (OC) and compared the rate,

r =
(# of times that decision was identical to OC)

(# of total decision times in the trial)
(9)

Each trial ended after two minutes had elapsed or
after the ball had been kicked into the goal.

Figs. 6 (a) and (b) show two initial placements in the
experiment. In these initial placements, both robots
observe the ball. We have experimented with three
methods under two conditions, 1) robot B localizes
itself by local vision (normal), and 2) robot B local-
izes itself but has large errors, its location is inverted
against the center of the field, and the 100 degrees
offset is added to the posture (large). We had ten
trials for each initial placement in these six condi-
tions. Table 1 shows the rate at which the robot
A’s decision was identical to the decision with the
overhead camera. We can see that with the aver-
aged shared map, when large errors are introduced,
the rate is worse than the rate without information
sharing. However, with the subjective map, in all
conditions, the rate is better than the rate without
infomation sharing and the rate with an averaged
shared map. This indicates the validity of the sub-
jective map approach.

In case 1, without information sharing, the robots
bumped into each other because they did not know
each other’s positions, and they were initially placed
at nearly the same distance from the ball. With in-
formation sharing under normal localization errors,
they showed cooperative behaviors. Fig. 7 shows
such behaviors.

In case 2, the rate of averaged map showed little
difference to that of no information sharing. While
under conditions that robot B had large localization
errors, the result for the averaged map and subjective



Table 1: The rate of times that robot A’s decision
was identical to the decision using an overhead cam-
era

error and method
the rate

mean variance
[I] no sharing 0.48 0.02

1) normal [II] averaged 0.64 0.01
[III] subjective 0.69 0.01
[I] no sharing 0.48 0.02

2) large [II] averaged 0.39 0.01
[III] subjective 0.59 0.02

Figure 7: A sequence of the robots’ movements us-
ing subjective maps in case 1 under nomal localiza-
tion error

map showed a big diffrence. Figs. 8 (a) and (b) show
the potential field of robot A and the positions of ob-
jects in its averaged map and its subjective map at
the initial position. Owing to robot B’s large local-
ization errors, robot A also came to have large errors
in the averaged map and made incorrect decisions.
However, as shown in Fig. 8(b), in the subjective
map, robot B’s error did not affect robot A, and the
rate increased. Fig. 10 shows the robots’ movements
based on the subjective map. We can see that robot
A appropriately moved to the supporting position.

Fig. 6(c) shows the initial placement of case 3. Robot
B localizes itself by local vision. In this case, robot
A cannot observe the ball but robot B observes it.
Then, robot A uses the robot B’s position that robot
B tells even when it adopts a subjective map. And
robot A has the same map with methods [II] and
[III].

Figs. 11 (a) and (b) show the potential field and the
positions of objects with a non-shared map and the
subjective map in case 3. Without information shar-
ing, robot A did not know the location of the ball
(Fig. 11(a)) nor could it move to the support posi-
tion. With the subjective map, robot A moved to the
support position as expected. A sequence of move-
ments is shown in Fig. 12. In the whole sequence of
this figure, robot B aligns itself to the ball.

robot A
ball

robot B

(a) averaged map

ball
robot A

robot B

(b) subjective map

Figure 8: Robot A’s potential field and the positions
of objects in its map at the initial condition in case
2 with robot B’s large errors.

Figure 9: A sequence of the robots’ movements us-
ing an averaged map in case 2 with large error for
robot B.

5 Discussions and Conclusions

We have proposed a subjective map in a multi-robot
system in a dynamically changing environment. Al-
though the proposed subjective map is rather simple,
our experiments showed that even in situations with
large errors, such as those in which the method us-
ing a shared averaged map method lost the benefit
of information sharing, the proposed subjective map
worked effectively.

The idea of a subjective map is independent of global
positioning. We have used global positioning in com-
munication since it provided the simplest common
coordinate system. When robots can observe sev-
eral objects at the same time (e.g., each other and a
landmark), the relative coodinate on some object is
a good candidate for a reference coordinate system,
and we need not use a global positioning system. If
the quality of information is poor, a qualitative posi-
tioning system may work better than a quantitative
positioning system.



Figure 10: A sequence of the robots’ movements
using a subjective map in case 2 with large error for
robot B.

robotA

robotB:unknown

ball:unknown

(a) no information share

robotA

robotB
ball

(b) subjective map

Figure 11: Robot A’s potential field and positions
of objects in its map at the initial condition in case 3.

Future work would involve the investigation of using
a subjective map for other kinds of tasks, experi-
ments in more complex multi-robot systems, com-
parison to other information sharing methods, and
the weighting of information based on its reliablity
measured through communication.
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