Joint Attention Emerges through Bootstrap Learning
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Abstract—A human-like intelligent robot is expected to
have the capability to develop its cognitive functions through
experience without a priori knowledge or explicit teaching.
In addition, the realization of this kind of robot can lead us to
understand the developmental mechanisms of human beings.
This paper proposes a bootstrap learning model by which
a robot can acquire the ability of joint attention without
a caregiver's evaluation or a controlled environment based
on the robot’s embedded mechanisms: visual attention and
learning with self-evaluation. Through learning based on the
proposed model, the robot finds a correlation in sensorimotor
coordination when joint attention succeeds and consequently
acquires the ability of joint attention by accumulating the
appropriate correlation and losing the uncorrelated coordi-
nation as statistical outliers. The experimental results show
the validity of the proposed model.

. INTRODUCTION

It is a challenging problem to develop a robot that can
acquire a cognitive function through interactions with
the environment without priori knowledge or explicit
teaching. The realization of this kind of robot reduces the
designer’s burden and could lead us to develop a human-
like artificial agent and to understand the developmental
mechanisms of human beings through it [1].

We have focused on joint attention, which is one of the
social cognitive functions, and developed a learning model
by which a robot acquires the ability of joint attention
through interactions with a human caregiver [2]. For our
purposes, joint attention is defined as the process by which

an agent attends to an object that another agent attends to.

[3]. In human beings, joint attention is considered to be
a cornerstone for social communication and enables an
infant to interact with the caregiver and to receive various
kinds of knowledge from the caregiver [4], [5].

In robotics studies [6]-[9], joint attention has been
upheld as a significant function for a social robot to
realize interactions with humans. Note that these studies
have a common problem that a robot’s ability of joint
attention is considered to be innate. In cognitive science,
it is suggested that a human infant acquires the ability of
joint attention through interactions with its environment
without explicit teaching [4]. Therefore, the above robotics
studies could not explain the developmental mechanisms

of the human infant. On the other hand, Fasehl. [10]
proposed an idea how an infant could develop the ability
of joint attention. However, the validity of their idea
has not been shown by implementing it in an artificial
agent. Nagaet al. [2] proposed a learning model for joint
attention and showed that the model enables a robot to
acquire the ability by receiving task evaluation from a
human caregiver. The caregiver plays an important role
in the robot’s development just as a caregiver would in
an infant's development. However, it is very interesting
to argue how the robot or the infant can acquire higher
cognitive functions based on its embedded or pre-learned
capabilities without the caregiver’s intervention.

This paper presents a learning model which enables
a robot to acquire the ability of joint attention based
on its embedded capabilities without a caregiver’s task
evaluation or a controlled environment. In this paper,
independent learning without teaching, external evalu-
ation, or a controlled environment is calldzbotstrap
learning The proposed bootstrap learning model consists
of two embedded mechanisms of the robot. One is visual
attention to find and attend to a salient object in the robot’s
view, and the other is learning with self-evaluation to
evaluate the success of visual attention and then to learn
a sensorimotor coordination. Through trials and learning
based on the above mechanisms, the robot acquires the
correlation of the sensorimotor coordination when joint at-
tention succeeds while it cannot find the correlation when
joint attention fails. In the latter situation, the uncorrelated
coordination is expected to be lost as statistical outliers
since the position of the object that the robot attends
to changes randomly every trial. As a result, only the
appropriate correlation survives in the learning module
and consequently allows the robot to acquire the ability
of joint attention.

In the rest of this paper, the proposed bootstrap learning
model is first explained. Next, some experiments which
show that the robot can acquire the ability of joint attention
based on the proposed model without a controlled envi-
ronment or external task evaluation are described. Finally,
conclusions and future work are given.



[I. EMERGENCE OF JOINT ATTENTION on the visual attention mechanism. When visual attention
THROUGH BOOTSTRAP LEARNING succeeds, the robot evaluates it by itself and learns the
A Definition of Joint Attention sensorimotor coordination between the inpiitsé and

) _ . ~ the outputA@ based on the mechanism of learning with
Fig. 1 shows an experimental setup for joint attention, in  gg|f-evaluation.

which a robot with two cameras, a human caregiver, and  Note that visual attention is not always joint attention.

multiple salient objects are indicated. In each trial, the The reason is that there are some salient objects in the en-
objects are placed at random positions, and the caregiver yironment, and the object that the robot attends to based on
attends to a different object. In Fig. 1, the caregiver attends  the mechanism of visual attention is just an interesting one
to the square object. The robot can receive a camera image oy the robot, but does not always correspond to the object
I and camera angle8 = [0pan, O] @s inputs, and  that the caregiver attends to. Therefore, the sensorimotor
output a motor commanaé = [Apan, Abuy] for the  coordination that the robot learns in each trial can be either
camera head to rotate. The joint attention task in this correct or incorrect for joint attention. The correct learning
situation is defined as the process by which the robot ata are acquired when joint attention succeeds, and the in-
outputs a motor command @ based on the sensor inputs  correct are acquired when joint attention fails while visual
I and#, and consequently attends to the same object that attention succeeds. Through the learning process, however,
the caregiver attends to. Note thAtf is incrementally the robot loses the incorrect data as outliers because it is
generated to control the camera head because of two k'ndssupposed that the object position that the robot attends
of nonlinearity: the rotational center of the camera head changes randomly every trial and the sensorimotor
does not coincide with the optical center of each camera, cqordination does not have any correlation. As a result,
and it is impossible to determine which point along the  the ropot acquires the appropriate sensorimotor correlation
caregiver's gaze is the focus of the caregiver's attention.  opjy when joint attention succeeds. In addition, the robot is
expected to increase the success rate of joint attention over
chance by utilizing the acquired sensorimotor coordination
instead of the embedded mechanism of visual attention in
subsequent trials. The robot consequently can find a better
correlated coordination and acquire the ability of joint
attention through bootstrap learning without a controlled
environment or external task evaluation.

I1l. BOOTSTRAP LEARNING MODEL FOR
JOINT ATTENTION

The proposed bootstrap learning model, which is based on
visual attention and learning with self-evaluation, is shown
in Fig. 2. As described above, the inputs to the modellare
Fig. 1. An environmental setup for joint attention and@, and the output igA6. The proposed model consists
of the following modules, each of which corresponds to
the embedded mechanisms: (a) visual attention and (b)
B. A Basic Idea learning with self-evaluation.

The robot acquires the ability of joint attention through (a-1) Thesalient feature detectoextracts distinguishing

bootstrap learning based on the following embedded ca- image_ areas fronf. :
pabilities: (a-2) Thevisual feedback controllereceives the detected

i<ual attentionto find and attend t lient obiect image features about objects and outplfsAé to
€)) visual a en,lon..o ind and attend to a salient objec attend to an interesting object.
in the robot’s view, and

(b) learning with self-evaluatiorto evaluate the success (b-1) Theinternal evaluatordrives the learning mechanism

f visual attent d then to | ot in the learning module when the robot can attend to
of visual attention and then to learn a sensorimotor the interesting object.
coordination.

(b-2) Thelearning modulereceives the image of the care-

First, the robot attends to the caregiver because it is the giver's face and as inputs and outputs' A@. This
most interesting feature for the roboThen, if the robot module learns the sensorimotor coordination when it
finds a salient object in its view, the robot shifts its gaze is triggered by the internal evaluator.

direction from the caregivers face to the object based g gajient feature detector and the visual feedback con-
1The preference for looking at the caregiver is also innate for a human FrO”er act as the visual attem'_on mechanism, and the
infant. internal evaluator and the learning module carry out the
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learning with self-evaluation .. As described above, visual attention, which is one of

the robot’s embedded mechanisms, is performed by the

Fig. 2. Bootstrap learning model for joint attention based on visual Salient feature detector and the visual feedback controller.

attention and learning with self-evaluation
C. Internal Evaluator

The other embedded mechanism, that is learning with self-

mechanism of learning with self-evaluation. In addition to €valuation, is realized by the internal evaluator and the

these modules, the bootstrap learning model has another /€aning module. _ _ o
module to arbitrate the output of the robot. The internal evaluator drives the learning mechanism in

(c) The gate makes a choice betweed” A# and the learning module when

LM AQ, and outputsA@ as the robot's motor com- V(ws —cx)? + (yi — cy)? < dan, ()
mand.

The following sections explain these modules in detail.

whered,;, is a threshold for evaluating whether the robot
in looking at an object in the center of the camera image
A. Salient Feature Detector or not. Note that the internal evaluator does not know
whether joint attention has succeeded but knows whether

The salient feature detector extracts distinguishing image *' )
visual attention has succeeded.

areas inI by color, edge, motion, and face detectors.
The color, edge, and motion detectors extract objects p | earning Module
(¢ =1,...,n) which have bright colors, complicated tex-
tures, and motions, respectively. Then, the salient feature
detector selects the most interesting objegt among the
extracted objects by comparing the sum of the interests of
all features.

The learning module consists of a three-layered neural
network. In the forward processing, this module receives
the image of the caregiver's face and the angle of the
camera head as inputs, and outputs A9 as a mo-
tor command. The caregiver's face image is required
itrg = argmax(ay f2 + aa ffY + asz foh), (1) to estimate the motor command/ A6 to follow the
! caregiver's gaze direction, and the andleis utilized
where f£o!, f;dg, and f/°! indicate the size of the bright ~ to output“* A@ incrementally and nonlinearly because
color area, the complexity of the texture, and the amount the caregiver's attention cannot be narrowed down to a
of the motion, respectively. The coefficierfts;, as, as3) particular point along the line of the caregiver's gaze
denote how interesting each feature is and are determined direction. The generated motor commaht{ A6 is sent
according to the robot’s characteristics and the context. to the gate as the output of the learning module.
At the same time, the face detector extracts the face-like In the learning process, this module learns the sen-
stimuli of the caregiver. The detection of face-like stimuli  sorimotor coordination by back propagation when it is
is a fundamental ability for a social agent; therefore, it triggered by the internal evaluator. As described above,
should be treated in the same manner as the detection of the internal evaluator drives the learning module according
the primitive features. The detected primitive feature of the to the success of visual attention, not joint attention, this
objecti,., and the face-like one of the caregiver are sent module has correct and incorrect learning data. The correct
to the visual feedback controller and the learning module, data mean joint attention has succeeded while the incorrect
respectively. mean it has failed. In the case of correct data, the learning
module can acquire the correlation between the inputs,
B. Visual Feedback Controller the caregiver's face image ar} and the outputA®.
The visual feedback controller receives the detected image On the other hand, in the case of incorrect data, this
feature of the objeci;,., and outputs a motor command module cannot find the appropriate correlation; therefore,



such data is expected to be lost as outliers through the
learning process. As a result, the acquired correlation of
the sensorimotor coordination allows the robot to realize
joint attention.

E. Gate

The gate arbitrates the motor commarxld between
VEA@ from the visual feedback controller arfd’ A6
from the learning module. The gate sets a gating function
to define the selecting rate of the outputs. At the beginning
of the learning process, the selecting rate"dfA# is

set to a high probability because the learning module has
not acquired the appropriate sensorimotor coordination for
joint attention yet. On the other hand, in the latter stage of
the learning process, the outpt! A8 from the learning
module, which has acquired the sensorimotor correlation,
gradually comes to be selected at high probability. As a
result, the robot can experience many learning situations
which include both correct and incorrect data in the early
stage of the learning process, and increase the correct ones
according to the learning advance. It allows the robot to
acquire more appropriate sensorimotor coordination for
joint attention.

IV. EXPERIMENT [obult of the caregiver's face by template. matching, ight:
To show the validity of the proposed model, it was the detected result of the bright colors)
examined that an actual robot is able to acquire the ability
of joint attention based on the proposed model in an Fig. 3. An experimental setup for joint attention
uncontrolled environment in which multiple salient objects

are placed.
positions in the simulated environment. The number of
input, hidden, and output units of the learning module
An experimental environment is shown in Fig. 3 (a), and were set to 752 (30« 25 for a camera image and 2 for
the left camera image of the robot is shown in (b). The the pan and the tilt angles of the camera head), 7, and 2,
caregiver sits in front of the robot and attends to the respectively. Under this condition, the robot repeated the
object in its hand. Other salient objects are set around the trials and the learning alternately based on the proposed
caregiver at random positions. The robot has two cameras model.
and can turn them simultaneously to pan and tilt. The ) ) o
robot receives the camera image and detects the caregiversB: Performance Change in Various Situations
face (left in Fig. 3 (b)) and the objects (right) by the It was verified that the proposed model enables the robot to
salient feature detector. In the experiment, the degrees of acquire the ability of joint attention in an environment that
the interests of the image features in Eqg. (1) are set to includes multiple objects. The change of the success rate
(a1, ag, az) = (1, 0, 0), and the threshold of the success of joint attention in terms of the learning time is shown
of visual attention in Eq. (3) is defined ag, = W, /6, in Fig. 4 (a), where the number of the objects are set to
whereW, is the width of the camera image. 1, 3, 5, or 10. Fig. 4 (b) indicates the gating function (the
To execute the learning in a simulated environment, the selecting rate of ™ A8) as a sigmoid, which showed the
robot acquired 125 data sets, which included a camera best performance in some experiments. The number of
image in which the caregiver’s face was extracted as a objects 1 means that the robot has only correct learning
window of 30 x 25 pixels and a camera angle when the situation every trial. By contrast, the number 10 means
robot attended to the caregiver, and a motor command that the robot can experience the correct learning situation
for the camera head to shift its gaze direction from the only at 1/10 probability at the beginning of the learning.
caregiver to the object that the caregiver attended to in However, it is expected to increase the correct one by
advance. Then, in each trial, we took one data set from utilizing the learning module, which has already acquired
the above and placed other salient objects at random the correlated coordination until that time, according to

A. Experimental Setup
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C. Final Performance of Joint Attention
(b) gating function (sigmoid) After learning, we evaluated the final performance of the
robot that used the sigmoid function for gating and learned
Fig. 4. The change of the success rate of joint attention and gating N the environment with five objects. Fig. 6 shows the left
function (# of objects: 1, 3, 5, or 10, gate: sigmoid) camera images of the robot in which the input and the
output of the learning module are indicated. In each of
them, the caregiver’s face image enclosed in a rectangle
of 30 x 25 pixels is the input to the learning module,
the advanced learning. From the result of Fig. 4 (a), we and the straight line shows the output from the learning
can see that the success rates of joint attention are at module of which the width and the height indicate the pan
chance levels at the beginning of the learning process; and the tilt angles of the output, respectively. The robot
however, they increase to high performance at the end js expected to find the object that the caregiver attends to
even if many objects are set in the environment. Therefore, py controlling the camera head along this line. From the
it is concluded that the robot can acquire the ability of yresults shown in Fig. 6, it is confirmed that the learning
joint attention based on the proposed bootstrap learning module can estimate the motor command to realize joint
model W|th0ut a Controlled enVironment or eXternal task attention Since the Straight |ine Corresponds to the gaze
evaluation. direction of the caregiver.

Next, the effectiveness of the sigmoid gating function Fig. 7 shows the change of the robot’s camera image
was verified. The result of Fig. 4 (a) (the number of the when it shifts its gaze direction from the caregiver’s face to
object: 5) was compared with the success rate of joint the object based on the output from the learning module.
attention when the gating function was set to a constant The rectangle and the straight lines on the caregiver’s
value. The performance changes when the gating rate face indicate the same meanings described above, and the
of LM A@ is 0.7, 0.9, or 1.0 are shown in Fig. 5. The circles and the cross lines show the gazing area of the
comparison of these results indicates that the gate designedrobot and the object’s position, respectively. The learning
as a sigmoid function can improve the task performance of module incrementally generates a motor command at each
joint attention. Especially, when the gating rate is 1.0, the step, and the robot consequently realizes the motion to
success rate of join attention has not risen to the chance follow the caregiver's gaze direction. During the camera
level, that is 0.2. The reason is that the learning module motion, if the object is detected in the circle on the image,
which had not acquired the appropriate correlation was the robot stops its motion. This experimental result shows
utilized in the early stage of learning, and the learning that the robot can realize joint attention based on the
data were biased to the initial experiences. These results proposed model even if the object is far from the caregiver.



input image of
learning module

output of learning module

Fig. 6. The input and the output of the learning module when the
caregiver is looking at various directions

the gazing area
the object position

Fig. 7. The change of the camera image when the robot shifts its gaze
direction from the caregiver's face to the object

V. CONCLUSION

The bootstrap learning model for joint attention has been
presented in this paper. The model enables the robot
to acquire the ability of joint attention by finding the
sensorimotor correlation based on two embedded mech-
anisms: visual attention and learning with self-evaluation.
Furthermore, the gate module in the proposed model
makes learning more effective by utilizing the learning
module which has already acquired the correlation. The
experimental results showed that the robot can acquire
the ability of joint attention based on the proposed model
without a controlled environment or external task evalua-
tion.

A more efficient learning mechanism should be devel-
oped so that the learning is executed not on the simulation
but on the actual robot. In addition, the gating function
should not be a deterministic one, like a sigmoid func-
tion, but designed by the performance of the robot. The

realization of these changes will make the robot a truly
developmental agent.
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