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Abstract

This paper presents a method for learning the
parameters of rhythmic walking to generate a
purposive motion. The controller consists of
the two layers. Rhythmic walking is realized
by the lower layer controller which adjusts the
speed of the phase on the desired trajectory de-
pending on the sensor information. The upper
layer controller learns (1) the feasible parame-
ter sets that enable a stable walking for a robot,
(2) the causal relationship between the walk-
ing parameters to be given to the lower layer
controller and the change of the sensor infor-
mation, and (3) the feasible rhythmic walking
parameters by reinforcement learning so that a
robot can reach to the goal based on the vi-
sual information. The method was examined
in the real robot, and it learns to reach the ball
and to shoot it into the goal in the context of
RoboCupSoccer competition.

1 Introduction

Recently, a number of humanoid projects have started
and various kinds of humanoid platforms have been de-
veloped. The typical method for real robot adopted
in those platforms is planning the desired trajectory
of each joint based on Zero Moment Point [3, 14]. In
that method, the ZMP trajectory for not falling down
is planned and the trajectory of each joint is calculated
based on the ZMP trajectory. This method needs very
precise dynamics parameters for the robot and much cal-
culation time for planning.

The other method to realize bipedal walking is
rhythmic-walking-based approach. This method doesn
not use the precise structural parameters of a robot. In-
stead, the controller adjusts its inherent frequency de-
pending on the sensor information so that the entrain-
ment between dynamics of the controller and those of en-
vironment takes place. Taga et al. proposed the model of
CPG (Central Pattern Generator) system [2] for human

walking based on the nonlinear dynamics equations [11].
The network system changes its frequency depending on
the sensor information. In the simulation experiment,
this model realizes the stable walking under the various
kinds of disturbances [6]. In the original Taga’s CPG
model, the output value of each neuron is used as a ref-
erence of torque applied to a corresponding joint. While
almost all of the currently existing humanoid robots are
driven by high gain PD controllers, instead of torque
control. Therefore, it is difficult to apply Taga’s CPG
model to real robots directly. However, even such a robot
with high gain PD controllers can realize the stable walk-
ing with a controller which utilizes sensor information
properly. Pratt [9] realizes the energy efficient walking
in real robot with a controller which consists of state
machines. The state transition of the controller occurs
when the swing leg touches the ground. Tsuchiya et al.
[13] realized stable walking based on a method in which
a trajectory controller determines the shape of the tra-
jectory, and a phase controller changes the speed of the
desired angle on the trajectory. In this controller the
phase speed is adjusted by the sensor information.

In rhythmic walking, the control parameters are found
heuristically, not by planning as ZMP approach. This
makes it difficult to construct the upper layer controller
to control the movement of a robot because the walk-
ing parameters such as walking step are not found until
the robot interacts with the real world. Taga [12] and
Fukuoka et al. [4] constructs the upper layer controller
which gives the control parameters to the lower CPG
controller depending the visual information so that the
robot can avoid obstacles or climb over a step. In these
methods, the adjusting parameters were given by the de-
signer in advance. However, for making a more adaptive
robot to the dynamic situations, it is necessary that the
relationship between the parameters of the lower rhyth-
mic walking controller and the resultant change of the
environment should be learned.

In this paper, the layered controller is introduced,
in which the lower controller realizes rhythmic walking
based on the controller proposed by Tsuchiya et al. [13]
and the upper controller learns the parameters of the



controller of the lower layer based on the visual infor-
mation. There are three points in learning of the upper
layer controller. (1) In the first stage, it learns the feasi-
ble parameters of the lower layer controller which enables
a robot to walk. (2) To accelerate a learning process, the
upper layer controller learns the model of the world : the
relationship between the control parameters given to the
lower rhythmic walking controller and the change of the
visual sensor information. (3) The upper layer controller
learns what parameters should be given to reach a goal
by the reinforcement learning.

The rest of this paper is organized as follows. First,
the lower controller which enables a rhythmic walk is in-
troduced. Next, we describe the upper layer controller in
which the parameters of the lower controller is learned by
reinforcement learning. Then, the suggested controller is
applied to the RoboCupSoccer task [8], ”approaching to
a ball”, and experimental results are shown. Finally,
conclusions are given.

2 Rhythmic walking controller

2.1 Biped robot model

Fig. 1 shows a biped robot model used in the experiment
which has one-link torso, two four-link arms, and two six-
link legs. All joints are single DOF rotation ones. Each
foot has four FSRs to detect reaction force from the floor
and a CCD camera with a fish-eye lens is attached at the
top of the torso.

2.2 Rhythmic walking controller based on
CPG principle

Here, we build a lower-layer controller based on the con-
troller proposed by Tuchiya et al. [13]. The proposed
controller consists of two sub-controllers: a trajectory
controller and a phase controller (Fig. 2). The tra-
jectory controller outputs the desired trajectory of each
limb depending on the phase which is given by the phase
controller. The phase controller consists of four oscilla-
tors, each of which is responsible for movement of each
limb (Fig. 4). Each oscillator changes its speed depend-
ing on the touch sensor signal, and the effects reflected
on the oscillator in each limb. As a result, the desired
trajectory of each joint is adjusted so that global en-
trainment between dynamics of the robot and those of
the environment is realized. In the following, the details
of each controller are explained.

2.2.1 Trajectory controller
The trajectory controller calculates the desired trajec-

tory of each joint depending on the phase given by the
corresponding oscillator in the phase controller.

Here, the trajectory of each joint is characterized by
four parameters as shown in Fig. 3. For joints 3, 4 and
5, of which axes coincide with pitch axis, the desired
trajectory is determined so that in the swing phase the
foot trajectory draws a ellipse that has the radiuses, h in
vertical direction and β in horizontal direction, respec-
tively. For joints 2 and 4, of which axes coincide with
roll axis, the desired trajectory is determined so that the
leg tilts from −W to W relative to the vertical axis. The

desired trajectory of joint 1 is determined by the ampli-
tude of the oscillation, α. The desired trajectories are
summarized as following functions,

θ1 = α sin(φ) (1)
θ2 = W sin(φ) (2)
θi = fi(φ, h, β) (i = 3, 4, 5) (3)
θ6 = −W sin(φ). (4)

The detail of fi is explained in Appendix. Among
four parameters described above, α, which determines
the walking step length, and β, which determines the
walking direction are selected as rhythmic parameters
of walking. Although these parameters characterize ap-
proximate direction and step length, resultant walking is
not as precisely determined by those parameters because
of the slips between the support leg and the ground.
These parameters are learned in the upper layer learn-
ing module, explained in 3.

2.2.2 Phase controller
The phase which determines the desired value of each

joint is given by the phase controller. The phase con-
troller consists of two oscillators, φR for right leg and φL

for left leg. The dynamics of each oscillator is determined
by basic frequency, ω, the interaction term between two
oscillators, and the feedback signal from sensor informa-
tion,

φ̇L = ω −K(φL − φR − π) + gL (5)
φ̇R = ω −K(φR − φL − π) + gR. (6)

The second term of RHS in above equations keeps the
phases of two oscillators in opposite. The third term,
feedback signal from sensor information, is given as fol-
lows:

gi =
{

K ′Feedi (0 < φ < φC)
−ω(1− Feedi) (φC ≤ φ < 2π) (7)

i = {R,L},

where K ′, φC and Feedi denote feedback gain, the phase
when the swing leg contacts with the ground, and the
feedback sensor signal, respectively. Feedi returns 1 if
the FSR sensor value of the corresponding leg exceeds
the certain threshold value, otherwise 0. The third term
enables that the mode switching between the free leg
phase and the support one happens appropriately ac-
cording to the ground contact information from the FSR
sensors. In this paper, the value of each parameter is set
as follows; φC = π, ω = 5.23[rad/sec], K = 15.7, K ′ = 1.

3 Reinforcement learning with
rhythmic walking parameters

3.1 Principle of reinforcement learning

Reinforcement learning has recently been receiving in-
creased attention as a method for robot learning with
little or no a priori knowledge and higher capability of
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reactive and adaptive behaviors. Fig. 5 shows the ba-
sic model of robot-environment interaction [10], where
a robot and environment are modelled by two synchro-
nized finite state automatons interacting in a discrete
time cyclical processes. The robot senses the current
state st ∈ S of the environment and selects an action
at ∈ A. Based on the state and action, the environment
makes a transition to a new state st+1 ∈ S and generates
a reward rt that is passed back to the robot. Through
these interactions, the robot learns a purposive behav-
ior to achieve a given goal. In order for the learning to
converge correctly, the environment should satisfy the
Markovian assumption that the state transition depends
on only the current state and the taken action. The state
transition is modelled by a stochastic function T which
maps a pair of the current state and the action to take
to the next state (T : S ×A → S). Using T , the state
transition probability Pst,st+1(at) is given by

Pst,st+1(at) = Prob(T (st, at) = st+1). (8)

The immediate reward rt is given by the reward func-
tion in terms of the current state by R(st), that is
rt = R(st). Generally, Pst,st+1(at) (hereafter Pa

ss′) and
R(st) (hereafter Ra

ss′) are unknown.
The aim of the reinforcement learner is to maximize

the accumulated summation of the given rewards (called
return) given by

return(t) =
∞∑

n=0

γnrt+n, (9)

where γ (0 ≤ γ ≤ 1) denotes a discounting factor to give
the temporal weight to the reward.

If the state transition probability is known, the opti-
mal policy which maximize the expected return is given
by finding the optimal value function V ∗(s) or the opti-
mal action value function Q∗(s, a) as follows. The deriva-
tion of them can be found elsewhere [10].

V ∗(s) = max
a

E{rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a

∑

s′
P̂a

ss′

[
R̂a

ss′ + γV ∗(s′)
]

(10)

Q∗(s, a) = E{rt+1 + γ max
a′

Q∗(st+1, a
′)|st = s, at = a}

=
∑

s′
P̂a

ss′

[
R̂a

ss′ + γ max
a′

Q∗(s′, a′)
]

(11)

3.2 Construction of action space based on
rhythmic parameters

The learning process has two stages. The first one is to
construct the action space consisting of feasible combina-
tions of two rhythmic walking parameters (α, β). To do
that, we prepared the three-dimensional posture space
sp in terms of the forward length β (quantized into four
lengths: 0, 10, 35 60 [mm]), the turning angle α (quan-
tized into three angles: -10, 0, 10 [deg]) both of which
mean the previous action command, and the leg side



(left or right). Therefore, we have 24 kinds of postures.
Firstly, we have constructed the action space of the feasi-
ble combinations of (α, β) excluding the infeasible ones
which cause collisions with its own body. Then, various
combinations of actions are examined for stable walk-
ing in the real robot. Fig. 6 shows the feasible actions
(empty boxes) for each leg corresponding to the previ-
ous actions. Due to the differences in physical properties
between two legs, the constructed action space was not
symmetric although it should be theoretically.
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Figure 6: Experimental result of action rule

3.3 Reinforcement learning with visual
information

Fig. 7 shows an overview of the whole system which con-
sists of two layers: adjusting walking based on the visual
information and generating walking based on neural os-
cillators. The state space consists of the visual informa-
tion sv and the robot posture sp, and adjusted action a is
learned by dynamic programming method based on the
rhythmic walking parameters (α，β). In a case of ball
shooting task, sv consists of ball substates and goal sub-
states both of which are quantized as shown in Fig. 8. In
addition to these substates, we add two more substates,
that is, “the ball is missing” and “the goal is missing”
because they are necessary to recover from loosing their
sight.
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Figure 7: Biped walking system with visual perception

Learning module consists of a planner which deter-
mines an action a based on the current state s, a state
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Figure 8: State space of ball and goal

transition model which estimates the state transition
probability Pa

ss′ through the interactions, and a reward
model (see Fig. 9). Based on DP, the action value func-
tion Q(s, a) is updated and the learning stops when no
more changes in the summation of action values.

Q(s, a) =
∑

s′
Pa

ss′ [Rs + γ max
a′

Q(s′, a′)], (12)

where Rs denote the expected reward at the state s.
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Model

Action State

Update policy
value fanction    Dynamic

Programming

Update state transition model

Figure 9: Learning module

4 Experiments

4.1 Robot platform and environment set-up

Here, we use a humanoid platform HOAP-1 by Fujitsu
Automation LTD. [7] attaching a CCD camera with a
fish-eye lens at the head. Figs. 10 and 11 show a pic-
ture and a system configuration, respectively. The height
and the weight are about 480[mm] and 6[kg], and each
leg (arm) has six (four) DOFs. Joint encoders have high
resolution of 0.001[deg/pulse] and reaction force sensors
(FSRs) are attached at soles. The colour image process-
ing to detect an orange ball and a blue goal is performed
on the CPU (Pentium3 800MHz) under RT-Linux. Fig.
12 shows an on-board image.

The experimental set-up is shown in Fig. 13 where the
initial robot position is inside the circle whose center and
radius are the ball position and 1000 [mm], respectively,
and the initial ball position is located less than 1500
[mm] from the goal of which width and height are 1800
[mm] and 900 [mm], respectively. The task is to take a
position just before the ball so that the robot can shoot
a ball into the goal. Each episode ends when the robot
succeeds in getting such positions or fails (touches the
ball or the pre-specified time period expires).

4.2 Experimental results

One of the most serious issues in applying the rein-
forcement learning method to real robot tasks is how
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Figure 12: Robot’s view (CCD camera image through
fish-lens)
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to accelerate the learning process. Instead of using Q-
learning that is most typically used in many applica-
tions, we use a DP approach based on the state tran-
sition model Pa

ss′ that is obtained separately from the
behavior learning itself. Further, we give the instruc-
tions to start up the learning, more correctly, during the
first 50 episodes (about a half hour), the human instruc-
tor avoids the useless exploration by directly specifying
the action command to the learner about 10 times per
one episode. After that, the learner experienced about
1500 episodes. Owing to the state transition model and
initial instructions, the learning converged in 15 hours,
and the robot learned to get the right position from any
initial positions inside the half field.

Fig. 14 shows the learned behaviors from various ini-
tial positions. In Fig. 14, the robot can capture the
image including both the ball and the goal from the ini-
tial position while in Fig. 14 (f) the robot cannot see
the ball or the goal from the initial position.

(a) Result 1 (b) Result 2 (c) Result 3

(d) Result 4 (e) Result 5 (f) Result 6

Figure 14: Experimental results

5 Concluding remarks

A vision-based behavior of humanoid was generated by
reinforcement learning with rhythmic walking parame-
ters. Since the humanoid generally has many DOFs, it
is very hard to control all of them. Instead of using these
DOFs as action space, we adopted rhythmic walking pa-
rameters, which drastically reduces the search space and
therefore the real robot learning was enabled in reason-
able time. In this study, the designer specified the state
space consisting of visual features and robot postures.
State space construction by learning is one of the future
issues.
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Appendix: planning the reference
trajectory around the pitch axis
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Figure 15: Joint angles and the reference trajectory of
the foot

The reference trajectories of joints 3, 4 and 5 are deter-
mined by the position of the foot. Let x and z be the posi-
tion of the foot in the plane XZ which is perpendicular to the
pitch axis, the reference trajectory of the foot is given by,

xF =
β

2
cos(φF ),

zF = −H + h sin(φF ),

xS = −β

2
cos(φS),

zS = −H,

where (xF , zF ) and (xS , zS) are the positions of the foot in
the free and support phase, respectively, H is the length from
the ground to the joint 3, β is the step length, and h is
the maximum height of the foot from the ground (Fig. 15).
When the position of the foot is determined, the angle of each
joint to be realized is calculated by the inverse kinematics as
follows,

θ3 =
π

2
+ atan2(z, x)− atan2(k, x2 + z2 + L2

1 − L2
2)

θ4 = atan2(k, x2 + z2 − L2
1 − L2

2)

θ5 = −(θ3 + θ4),

where k is given by the following equation,

k =
√

(x2 + z2 + L2
1 + L2

2)
2 − 2{(x2 + z2)2 + L4

1 + L4
2}.

In this research, the value of each parameter is set as
follows; H = 185[mm], h = 8[mm], W = 13[deg], L1 =
100[mm], L2 = 100[mm].


