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Abstract— This paper presents a method for generating
vision-based humanoid behaviors by reinforcement learning
with rhythmic walking parameters. The walking is stabilized
by a rhythmic motion controller such as CPG or neural
oscillator. The learning process consists of two stages: the
first one is building an action space with two parameters (a
forward step length and a turning angle) that inhibits com-
binations that are not feasible. The second is reinforcement
learning with the constructed action space and the state space
consisting of visual features and posture parameters to find
feasible actions. The method is applied to a situation of the
RoboCupSoccer Humanoid league [6], that is, to approach
the ball and to shoot it into the goal. Instructions by human
are given to start up the learning process and the rest is
completely self-learning in real situations.

I. I NTRODUCTION

Since the debut of the Honda humanoid [3], the research
community for biped walking has been growing and
various approaches have been introduced. Among them,
there are two major trends in biped walking. One is a
model based approach with ZMP (zero moment point)
principle [4] or the inverted pendulum model [15] both of
which plan the desired trajectories and control their bipeds
to follow them. To stabilize the walking, these methods
need very precise dynamics parameters for both the robot
and its environment.

The other one is inspired by the findings [2] in neu-
rophysiology that most animals generate their walking
motions based on the central pattern generator (hereafter,
CPG) or neural oscillator. CPG is a cluster of neural
structures that oscillate each other under the constraint of
the relationships in their phase spaces and generate rhyth-
mic motions that interact with the external environment.
The observed motion can be regarded as a result of the
entrainment between robot motion and the environment.
This sort of approach does not need model parameters that
are as precicise as ZMP or the inverted pendulum.

Taga et al. [12] gave the mathematical formulation for
the neural oscillator, constructed a dynamic controller
for biped walking on the sagittal plane, and showed
the simulation results which indicated that his method
could generate stable biped motions similar to human
walking. Others extended his method to three dimensions
and adaptive motion on the slope by adjusting the neural

oscillator [1].
The second approach seems promising for adaptation

against changes in the environment. To handle more
complicated situations, visual information has been used.
Taga [13] studied how the robot can avoid an obstacle
by adjusting the walking pattern assuming that the object
height and the distance to it can be measured by the
visual information. Fukuoka et al. [5] also adjusted CPG
input so that a quadruped can climb over a step through
the visual information. In these methods, however, the
adjusting parameters were given by the designer in ad-
vance. Therefore, it seems difficult to apply them to more
dynamic situations, and learning method seems necessary.

This paper presents a method for generating vision-
based humanoid behaviors by reinforcement learning with
rhythmic walking parameters. A rhythmic motion con-
troller such as CPG or neural oscillator stabilizes the
walking [14]. The learning process consists of building an
action space with two parameters (a forward step width
and a turning angle) so that infeasible combinations are
inhibited, and reinforcement learning with the constructed
action space and the state space consisting of visual
features and posture parameters to find a feasible action.
The method is applied to a situation from the Humanoid
RoboCupSoccer league [6], that is, to approach the ball
and to shoot it into the goal. Instructions by human are
given to start up the learning process, and the rest is solely
self-learning in real situations.

II. RHYTHMIC WALKING CONTROLLER

A. Biped robot model

Fig. 1 shows a biped robot model used in the experiment
which has a one-link torso, two four-link arms, and two
six-link legs. All joints rotate with a single DoF. Each foot
has four FSRs to detect reaction force from the floor, and
a CCD camera with a fish-eye lens is attached at the top
of the torso.

B. Rhythmic walking controller based on CPG principle

Here, we build a lower-layer controller based on the
controller proposed by Tuchiya et al. [14]. The proposed
controller consists of two sub-controllers:a trajectory
controller anda phase controller(Fig. 2). The trajectory
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controller outputs the desired trajectory of each limb
depending on the phase which is given by the phase
controller. The phase controller consists of four oscillators,
each of which is responsible for movement of each limb
(Fig. 4). Each oscillator changes its speed depending on
the touch sensor signal, and the effects reflected on the
oscillator in each limb. As a result, the desired trajectory of
each joint is adjusted so that global entrainment between
dynamics of the robot and those of the environment is
realized. In the following, the details of each controller
are explained.

1) Trajectory controller: The trajectory controller cal-
culates the desired trajectory of each joint depending on
the phase given by the corresponding oscillator in the
phase controller.

Here, the trajectory of each joint is characterized by
four parameters as shown in Fig. 3. For joints 3, 4 and 5,
which coincide with pitch axis, the desired trajectory is
determined so that in the swing phase the foot trajectory
draws a ellipse that has the radii,h in the vertical direction

andβ in the horizontal direction, respectively. For joints 2
and 4, which coincide with roll axis, the desired trajectory
is determined so that the leg tilts from−W to W relative
to the vertical axis. The amplitude of the oscillation,α ,
determines the desired trajectory of joint 1. The desired
trajectories are summarized as following functions,
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Fig. 3. Joint angles

θ1 = α sin(φ) (1)

θ2 = Wsin(φ) (2)

θi = fi(φ ,h,β ) (i = 3,4,5) (3)

θ6 = −Wsin(φ). (4)

The detail of fi is explained in the Appendix. Among
the four parameters described above,α, which determines
the walking step length, andβ , which determines the
walking direction are selected as rhythmic parameters of
walking. Although these parameters characterize approx-
imate direction and step length, those parameteres does
not determine resultant walking so precisely because of
slippage between the support leg and the ground. These
parameters are learned in the upper layer learning module,
explained in sectionIII .

2) Phase controller: The phase that determines the
desired value of each joint is set by the phase controller.
The phase controller consists of two oscillators,φR for
the right leg andφL for the left leg. The dynamics of each
oscillator is determined by the basic frequency,ω, the
interaction term between two oscillators, and the feedback
signal from sensor information,

φ̇L = ω−K(φL−φR−π)+gL (5)

φ̇R = ω−K(φR−φL−π)+gR. (6)

The second term on the RHS in the above equations
ensures that the oscillators have opposite phases. The third
term, feedback signal from sensor information, is given as
follows:

gi =
{

K′Feedi (0 < φ < φC)
−ω(1−Feedi) (φC ≤ φ < 2π) (7)

i = {R,L},



whereK′, φC and Feedi denote feedback gain, the phase
when the swing leg contacts with the ground, and the
feedback sensor signal, respectively.Feedi returns 1 if
the FSR sensor value of the corresponding leg exceeds
a certain threshold value, otherwise 0. The third term
enables the mode switching between the free leg phase,
and the support leg phase happens appropriately according
to the ground contact information from the FSR sensors.
In this paper, the value of each parameter is set as follows:
φC = π, ω = 5.23[rad/sec],K = 15.7, K′ = 1.
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III. R EINFORCEMENT LEARNING WITH RHYTHMIC

WALKING PARAMETERS

A. The principle of reinforcement learning

Reinforcement learning has recently been receiving
increased attention as a method of robot learning with
little or no a priori knowledge and a higher capability for
reactive and adaptive behaviors. Fig. 5 shows the basic
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Fig. 5. Basic model of agent-environment interaction

model of robot-environment interaction [11], in which
two synchronized finite state automatons interacting in
a discrete time cyclical processes models a robot and
environment. The robot senses the current statest ∈ S of
the environment and selects an actionat ∈A. Based on the
state and action, the environment makes a transition to a
new statest+1 ∈Sand generates a rewardrt that is passed

back to the robot. Through these interactions, the robot
learns a purposive behavior to achieve a given goal. For
the learning to converge correctly, the environment should
satisfy the Markovian assumption that the state transition
depends on only the current state and the action taken. A
stochastic functionT which maps a state-action pair to
the next state (T : S×A→ S) models the state transition.
UsingT, the state transition probabilityPst ,st+1(at) is given
by

Pst ,st+1(at) = Prob(T(st ,at) = st+1). (8)

The reward function gives the immediate reward,rt ,
in terms of the current state byR(st), that is rt = R(st).
Generally,Pst ,st+1(at) (hereafterPa

ss′ ) andR(st) (hereafter
Ra

ss′ ) are unknown.
The aim of the reinforcement learner is to maximize

the accumulated summation of the given rewards (called
return) given by

return(t) =
∞

∑
n=0

γnrt+n, (9)

whereγ (0≤ γ ≤ 1) denotes a discounting factor to give
the temporal weight to the reward.

If the state transition probability is known, the optimal
policy that maximizes the expectedreturn is given by
finding the optimal value functionV∗(s) or the optimal
action value functionQ∗(s,a) as follows. Their derivation
can be found elsewhere [11].

V∗(s) = max
a

E{rt+1 + γV∗(st+1)|st = s,at = a}
= max

a ∑
s′

Pa
ss′

[
Ra

ss′ + γV∗(s′)
]

(10)

Q∗(s,a) = E{rt+1 + γ max
a′

Q∗(st+1,a
′)|st = s,at = a}

= ∑
s′

Pa
ss′

[
Ra

ss′ + γ max
a′

Q∗(s′,a′)
]

(11)

In this paper, the learning module examines the state
transition when both feet contact with the ground. The
state space,S, consists of the visual informationsv and
the robot posturesp, and the action space consists of two
parameters of rhythmic walking. Details are explained in
the following subsections.

B. Construction of action space based on rhythmic pa-
rameters

The learning process has two stages. The first one
is to construct the action space consisting of feasible
combinations of two rhythmic walking parameters (α, β ).
To do that, we prepared the three-dimensional posture
spacesp in terms of the forward lengthβ (quantized into
four lengths: 0, 10, 35 60 [mm]), the turning angleα
(quantized into three angles: -10, 0, 10 [deg]), which are



the previous action command and the leg side (left or
right). Therefore, we have 24 kinds of postures. Firstly,
we have excluded the infeasible combinations of (α, β ),
which cause collisions with its own body. Then, various
combinations of actions are examined for stable walking
in the real robot. Fig. 6 shows the feasible actions (empty
boxes) for each leg corresponding to the previous actions.
Owing to the differences in physical properties between
the two legs, the constructed action space was not sym-
metric, although theoretically it should be.
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Fig. 6. Experimental result of action rule

C. Reinforcement learning with visual information

Fig. 7 shows an overview of the whole system, which
consists of two layers: adjusting walking based on the
visual information and generating walking based on neural
oscillators. The state space consists of the visual informa-
tion sv and the robot posturesp, and adjusted actiona is
learned by the dynamic programming (DP) method based
on the rhythmic walking parameters (α，β ). In the case
of the ball shooting task,sv consists of ball substates and
goal substates, which are quantized as shown in Fig. 8.
We add two more substates, that is, “the ball is missing”
and “the goal is missing” because they are necessary to
recover from loosing their sight.

The learning module consists of a planner that de-
termines an actiona based on the current states, a
state transition model that estimates the state transition
probability Pa

ss′ through the interactions, and a reward
model (see Fig. 9). Based on DP, the action value function
Q(s,a) is updated and the learning stops when there are
no more changes in the summation of action values.

Q(s,a) = ∑
s′

Pa
ss′ [Rs+ γ max

a′
Q(s′,a′)], (12)
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whereRs denote the expected reward at the states.

IV. EXPERIMENTS

A. Robot platform and environment set-up

We use a humanoid platform HOAP-1 by Fujitsu Au-
tomation Ltd. [9] attaching a CCD camera with a fish-
eye lens at the head. Figs. 10 and 11 show a picture
and a system configuration, respectively. The height and
the weight are about 480[mm] and 6[kg], and each leg
has six degrees-of-freecom and each arm has four. Joint
encoders have high resolution of 0.001[deg/pulse] and
reaction force sensors (FSRs) are attached at soles. The
colour image processing to detect an orange ball and a
blue goal is performed on the CPU (Pentium3 800MHz)
under RT-Linux. Fig. 12 shows an on-board image.
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Fig. 12. Robot’s view (CCD camera image through fish-
lens)

The experimental set-up is shown in Fig. 13 where the
initial robot position is inside the circle whose center and
radius are the ball position and 1000 [mm], respectively,
and the initial ball position is located less than 1500 [mm]
from the goal of which width and height are 1800 [mm]
and 900 [mm], respectively. The task is to take a position
just before the ball so that the robot can shoot a ball into
the goal. Each episode ends when the robot succeeds in
getting such positions or fails (touches the ball or the pre-
specified time period expires). The reward 1.0 is given
to the robot when the robot reaches to the right position,
otherwise 0.0.
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Fig. 13. Experimental environment

B. Experimental results

One of the most serious issues in applying the rein-
forcement learning method to real robot tasks is how
to accelerate the learning process. Instead of using Q-
learning that is most typically used in many applications,
we use a DP approach based on the state transition model
Pa

ss′ that is obtained separately from the behavior learning
itself. Further, we give the instructions to start up the
learning: during the first 50 episodes (about a half hour),
the human instructor avoids useless exploration by directly
specifying the action command to the learner about 10
times per episode. After that, the learner experienced about
1500 episodes. Owing to the state transition model and
initial instructions, learning converged in 15 hours, and
the robot learned to get the right position from any initial
positions inside the half field.

Fig. 14 shows the learned behaviors from various initial
positions. In Fig. 14, the robot can capture the image
including both the ball and the goal from the initial
position, while in Fig. 14 (f) the robot cannot see the ball
or the goal from the initial position.

V. CONCLUDING REMARKS

Vision-based humanoid behavior was generated by re-
inforcement learning with rhythmic walking parameters.
Since the humanoid generally has many DoFs, it is very
hard to control all of them. Instead of using these DoFs
in the action space, we adopted rhythmic walking pa-
rameters, which drastically reduces the search space and,



(a) Result 1 (b) Result 2

(c) Result 3 (d) Result 4

(e) Result 5 (f) Result 6

Fig. 14. Experimental results

therefore, real robot learning was possible in a reasonable
time. In this study, the designer specified the state space
consisting of visual features and robot postures. State
space construction by learning is one of the future issues.
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APPENDIX: PLANNING THE REFERENCE TRAJECTORY

AROUND THE PITCH AXIS
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Fig. 15. Joint angles and the reference trajectory of the
foot

The reference trajectories of joints 3, 4 and 5 are determined
by the position of the foot. Let x and z be the position of the
foot in the plane XZ which is perpendicular to the pitch axis,
the reference trajectory of the foot is given by,

xF =
β
2

cos(φF ),

zF = −H +hsin(φF ),

xS = −β
2

cos(φS),

zS = −H,

where (xF ,zF ) and (xS,zS) are the positions of the foot in the
free and support phase, respectively,H is the length from the
ground to the joint 3,β is the step length, andh is the maximum
height of the foot from the ground (Fig. 15). When the position
of the foot is determined, the angle of each joint to be realized
is calculated by the inverse kinematics as follows,

θ3 =
π
2

+atan2(z,x)−atan2(k,x2 +z2 +L2
1−L2

2)

θ4 = atan2(k,x2 +z2−L2
1−L2

2)
θ5 = −(θ3 +θ4),

where k is given by the following equation,

k =
√

(x2 +z2 +L2
1 +L2

2)
2−2{(x2 +z2)2 +L4

1 +L4
2}.

In this research, the value of each parameter is set as follows;
H = 185[mm], h = 8[mm], W = 13[deg], L1 = 100[mm], L2 =
100[mm].


