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Abstract: This paper presents a series of the studies of decomposing the large state/action
space at the bottom level into several subspaces and merging those subspaces at the higher level.
This allows the system to maintain computational resources assigned to the modules compact and
small, to reuse the policies learned before, and therefore to avoid the curse of dimension. To show
the validity of the proposed methods, we apply them to a simple soccer situation in the context of
RoboCup, and show the experimental results.
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1. Introduction

Reinforcement learning (hereafter, RL) is an attractive
method for robot behavior acquisition with little or no
a priori knowledge and higher capability of reactive and
adaptive behaviors 1). However, single and straightfor-
ward application of RL methods to real robot tasks is
considerably difficult due to its almost endless explana-
tion which is easily scaled up exponentially with the size
of the state/action spaces, that seems almost impossible
from a practical viewpoint.

One approach to the problem is to adopt a hierar-
chical structure within leaning control system. That is,
the system

1. prepares learning/control modules of one kind each
of which deals with a subspace divided from a whole
state/action space,

2. abstracts situations and behaviors based on the ac-
quired learning/control modules, and

3. acquires higher level, new behaviors based on the
state and action spaces constructed from already
abstracted situations and behaviors.

This approach can suppress the explosion of the state
and action spaces since the higher level learning/control
system manages adequately small size spaces which are
abstracted in the lower levels.

Fortunately, a long time-scale behavior might be of-
ten decomposed into a sequence of simple behaviors in
general, and therefore, the search space is expected to
be able to be divided into some smaller ones. Con-
nell and Mahadevan 2) decomposed the whole behavior
into sub-behaviors each of which can be independently
learned. Morimoto and Doya 5) applied a hierarchical
RL method by which an appropriate sequence of sub-
goals for the task is learned in the upper level while be-
haviors to achieve the subgoals are acquired in the lower
level. Kleiner et al. 6) proposed a hierarchical learning

system in which the modules at lower layer acquires low
level skills and the module at higher layer coordinates
them. Hasegawa and Fukuda 3, 4) proposed a hierar-
chical behavior controller, which consists of three types
of modules, behavior coordinator, behavior controller
and feedback controller, and applied it to a brachiation
robot.

However, in these proposed methods, the construc-
tions of the state/action spaces for higher layer modules
are independent from the learned behaviors of lower
modules. As a result, it seems difficult to abstract
situations and behaviors based on the acquired learn-
ing/control modules. The learned modules of lower
layer provide not only adaptive and reasonable behav-
iors but also the closeness to the goal states of the
modules and feasibility of their behaviors. It is reason-
able to utilize those information in order to construct
state/action spaces of higher modules from already ab-
stracted situations and behaviors of lower ones.

In this paper, we show a series of the proposed multi-
layered learning control system which prepares learn-
ing/control modules of one kind, assigns them to sub-
spaces divided from a whole state/action space, ab-
stracts situations and behaviors, and acquires higher
level behaviors. To show the validity of the proposed
method, we apply it to a simple soccer situation in the
context of RoboCup, and show the experimental results.

2. Multi-Layered Learning Sys-
tem

The architecture of the multi-layered reinforcement
learning system is shown in Figure 1, in which (a) and
(b) indicate a hierarchical architecture with two lev-
els, and an individual learning module embedded in the
layers. Each module has its own goal state in its state
space, and it learns the behavior to reach the goal, or
maximize the sum of the discounted reward received
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Figure 1: A hierarchical learning architecture
over time, using Q-learning method. The state and
the action are constructed using sensory information
and motor command, respectively at the bottom level.
The input and output to/from the higher level are the
goal state activation and the behavior activation, re-
spectively, as shown in Figure 1(b). The goal state
activation g is a normalized state value 1, and g = 1
when the situation is the goal state. When the module
receives the behavior activation b from the higher mod-
ules, it calculates the optimal policy for its own goal,
and sends action commands to the lower module. The
action command at the bottom level is translated to an
actual motor command, then the robot takes the action
in the environment.

One basic idea is to use the goal state activations g
of the lower modules as the representation of the situ-
ation for the higher modules. The state value function
can be regarded as closeness to the goal of the module.
The states of the higher modules are constructed using
the patterns of the goal state activations of the lower
modules. In contrast, the actions of the higher level
modules are constructed using the behavior activations
to the lower modules.

3. Behavior Acquisition on Multi-
Layered System 7)

3.1 Experiment System

Figure 2 shows a picture of a mobile robot we designed
and built, a ball, and a goal. It has two TV cam-

1The state value function estimates the sum of the discounted
reward received over time when the robot takes the optimal policy,
and is obtained by Q learning.

Figure 2: A mobile robot, a ball and a goal

eras: one has a wide-angle lens, and the other a omni-
directional mirror. The driving mechanism is PWS
(Powered Wheels Steering) system, and the action space
is constructed in terms of two torque values to be sent
to two motors that drive two wheels. These parameters
of the system are unknown to the robot, and it tries to
estimate the mapping from the sensory information to
the appropriate motor commands by the method. The
environment consists of the ball, the goal, and the mo-
bile robot.

3.2 Architecture

In this experiment, the robot receives the information of
only one goal, for the simplicity. The state space at the
bottom layer is constructed in terms of the centroids of
goal images of the two cameras and is tessellated both
into 9 by 9 grids each. The action space is constructed
in terms of two torque values to be sent to two motors
corresponding to two wheels and is tessellated into 3
by 3 grids. Consequently, the numbers of states and
actions are 162(9 × 9 × 2) and 9(3 × 3), respectively.
The state and action at the upper layer is constructed
by the learning modules at the lower layer which are
automatically assigned.

The experiment is constructed with two stages, one
is the learning one and other is the task execution one
using the learned result. First of all, the robot moved at
random in the environment for about two hours. The
system learned and constructed the four layers and one
learning module is assigned at the top layer (Figure 3).
We call each layer from the bottom, “bottom”, “mid-
dle”, “upper”, and “top” layers. In this experiment,
the system assigned 40 learning modules at the bottom
layer, 15 modules at the middle layer, and 4 modules
at the upper layer. Figures 4 and 5 show the distribu-
tions of goal state activations of learning modules at the
bottom layer in the state spaces of wide-angle camera
image and omni-directional mirror image, respectively.
The x and y axes indicate the centroid of goal images.
The numbers on the figures indicate the learning module
numbers. The figures show that each learning module
is assigned on the state space uniformly.

Figure 6 shows a rough sketch of the state transition
and the commands to the lower layer on the multi-layer
learning system during navigation task. The robot was
initially located far from the goal, and faced opposite
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Figure 4: The distribution of learning modules at bot-
tom layer on the normal camera image

direction to it. The target position was just in front of
the goal. The circles in the figure indicate the learn-
ing modules and their numbers. The empty up arrows
(broken lines) indicate that the upper learning mod-
ule recognizes the state which corresponds to the lower
module as the goal state. The small solid arrows indi-
cate the state transition while the robot accomplished
the task. The large down arrows indicate that the up-
per learning module set the behavior activation of the
lower learning module.

4. State Space Integration 8)

The system mentioned in the previous section dealt with
a whole state space from the lower layer to the higher
one. Therefore, it cannot handle the change of the state
variables because the system suppose that all tasks can
be defined on the state space at the bottom level. And
also, it is easily caught by a curse of dimension if num-
ber of the state variables is large. Here, we introduce
an idea that the system constructs a whole state space
with several decomposed state spaces. At the bottom
level, there are several decomposed state spaces in which
modules are assigned to acquire the low level behavior
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Figure 5: The distribution of learning modules at bot-
tom layer on the omni-directional camera image
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Figure 6: A rough sketch of the state transition on the
multi-layer learning system

in the small state spaces. The modules at the higher
level manage the lower modules assigned to different
state spaces. In this paper, we define the term “layer”
as a group of modules sharing the same state space, and
the term “level” as a class in the hierarchical structure.
There might be several layers at one level (see Figure
7).

When the higher layer constructs its state-action
space based on situations and behaviors acquired by the
modules of several lower layers, it should consider that
the layers are independent from each other, or there is
dependence between them. The layer might be basically
independent from each other when the each layer’s mod-
ules recognize different objects and learn behaviors for
them. For example, in the case of robot in the RoboCup
field, one layer’s modules could be the experts of ball
handling and the other layer’s modules the one of nav-
igation on the field. In such a case, the state space is
constructed as direct product of module’s activations of
lower layers. We call this way of state space construc-
tion “a multiplicative approach”.

On the other hand, there might be dependence be-
tween the layers when modules on both layers recognize
the same object in the environment with different logical
sensor outputs. For example, our robot recognizes an
object with both perspective vision system and omni-
directional one. In such a case, the system can recognize
the situation complementary using plural layers’ out-
puts even if one layer loses the object on its own state
spaces. We call this way of state space construction “a
complementary approach”.

Figure 7 shows an example hierarchical structure. At
the lowest level, there are four learning layers, and each
of them deals with its own logical sensory space (ball po-
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Figure 8: A sequence of the behavior activation of learn-
ing modules and the commands to the lower layer mod-
ules

sitions on the perspective camera image and omni one,
and goal position on both images). At the second level,
there are three learning layers in which one adopts the
multiplicative approach and the others adopt the com-
plementary approach. The multiplicative approach of
the “ball pers.×goal pers.” layer deals with lower mod-
ules of “ball pers.” and “goal pers.” layers. The arrows
in the figure indicate the flows from the goal state ac-
tivations to the state vectors. The arrows from the ac-
tion vectors to behavior activations are eliminated. At
the third level, the system has three learning layers in
which one adopts the multiplicative approach and the
others adopt the complementary approach, again. At
the levels higher than third layer, the learning layer is
constructed as described in the previous section.

After the learning stage, we let our robot do a cou-
ple of tasks. One of them is shooting a ball into the
goal using this multi-layer learning structure. The tar-
get situation is given by reading the sensor information
when the robot pushes the ball into the goal; the robot
captures the ball and goal at center bottom in the per-
spective camera image. As an initial position, the robot
is located far from the goal, faced opposite direction to
it. The ball was located between the robot and the goal.

Figure 8 shows the sequence of the behavior acti-
vation of learning modules and the commands to the
lower layer modules. The down arrows indicate that the
higher learning modules fire the behavior activations of

kicking device

wheel

Figure 9: A Robot : it has a PWS system vehicle, pin-
ball like kicking devices, and a small camera with a
omni-directional mirror

the lower learning modules.

5. Behavior Segmentation and
Coordination

Figure 9 shows a picture and a top view of a soccer
robot for middle size league of RoboCup we designed
and built, recently. The driving mechanism is PWS,
and it equips a pinball like kicking device in front of the
body. These days, many robots have number of actu-
ators such as navigation devices and object manipula-
tors, and have a capability of execution of many kinds
of task by coordinating these actuators. If one learning
module has to manipulate all actuators simultaneously,
the exploration space of action scales up exponentially
with the number of the actuators, and it is impractical
to apply a reinforcement learning system.

Fortunately, a complicated behavior which needs
many kinds of actuators might be often generally de-
composed into some simple behaviors each of which
needs small number of actuators. The basic idea of this
decomposition is that we can classify them based on
aspects of the actuators. For example, we may classify
the actuators into navigation devices and manipulators,
then the some of behaviors depend on the navigation de-
vices tightly, not on the manipulators, while the others
depend on manipulators, not on the navigation. The
action space based on only navigation devices seems
to be enough for acquisition of the former behaviors,
while the action space based on manipulator would be
sufficient for the manipulation tasks. If we can assign
learning modules to both action spaces and integrate
them at higher layer, much smaller computational re-
sources is needed and the learning time can be reduced
significantly.

5.1 Hierarchical Learning System

whole system We have implemented two kind of hi-
erarchical system to check the basic idea. Each system
has been assigned a task (Figures 10 and 11). One is
placing the ball in the center circle (task 1), and the
other is shooting the ball into the goal (task2).
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low level behavior acquisition We have prepared
the following subtasks for the vehicle: “Chasing a ball”,
“Looking the goal in front of the body”, “Reaching the
center circle”, and “Reaching the goal”. We have also
prepared the following subtasks for the kicking device:
“Catching the ball”, “Kicking the ball”, and “Setting
the kicking device to the home position”. Then, the
upper layer modules integrates these lower ones.

higher level behavior acquisition After the
learner acquired low level behaviors, it puts new learn-
ing modules at higher layer as shown in Figures 10 and
11 and learn two kinds of behaviors.
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Figure 12 shows the sequence of the goal state activa-
tions of lower modules and behavior commands to the
lower ones. At the start of this behavior, the robot acti-
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vates the module of setting home position behavior for
the kicking device and ball chasing module for the ve-
hicle at lower layer. The robot reaches the ball, then it
activates the module of catching the ball for kicking de-
vice and the module of reaching the center circle. Then,
it achieves the task of placing a ball to the center circle.

Figure 13 shows the sequence of the goal state ac-
tivations of lower modules and behavior commands to
the lower ones. At the start of this behavior, the robot
activates the module of setting home position behavior
for the kicking device and ball chasing module for the
vehicle at lower layer (from 1© to 8© in Figure 14). The
robot reaches the ball, then it activates the module of
catching the ball for kicking device and the module of
reaching the goal (from 9© to 12©). When the robot cap-
tures the goal in front of the body and get near to the
goal, it activates the module of kicking the ball, then
successfully shoots the ball into the goal (from 13© to
15©).

6. Conclusions and Future Works

We showed a series of approaches to the problem of
decomposing the large state action space at the bottom
level into several subspaces and merging those subspaces
at the higher level. As future works, there are a number
of issues to extend our current methods.

Interference between modules One module behav-
ior might have inference to another module which
has different actuators. For example, the action of
a navigation module will disturb the state transi-
tion from the view point of the kicking device mod-
ule; the catching behavior will be success if the
vehicle stays, while it will be failed if the vehicle
moves.

Self-assignment of modules It is still a important
issue to find a purposive behavior for each learning
module automatically. In the paper7), the system
distributes modules on the state space uniformly,
however, it is not so efficient. In many cases, the
designers have to define the goal of each module by
hand based on their own experiences and insights.



Self-construction of hierarchy Another missing
point in the current method is that it does not
have the mechanism that constructs the learning
layer by itself.
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