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Abstract. The conventional reinforcement learning approaches have
difficulties to handle the policy alternation of the opponents because
it may cause dynamic changes of state transition probabilities of which
stability is necessary for the learning to converge. This paper presents a
method of multi-module reinforcement learning in a multiagent environ-
ment, by which the learning agent can adapt itself to the policy changes
of the opponents. We show a preliminary result of a simple soccer situ-
ation in the context of RoboCup.

1 Introduction

There have been an increasing number of approaches to robot behavior acquisi-
tion based on the reinforcement learning methods. The conventional approaches
need an assumption that the environment is almost fixed or changing slowly so
that the learning agent can regard the state transition probabilities are consis-
tent during its learning. Therefore, it seems difficult to apply the reinforcement
learning method to a multiagent system because a policy alteration of the other
agents may occur, which dynamically changes the state transition probabilities
from the viewpoint of the learning agent. RoboCup provides such a typical one,
that is, a highly dynamic, hostile environment, in which an agent has to obtain
purposive behaviors.

There are a number of papers on reinforcement learning system in a multia-
gent environment. Asada et al. [1] proposed a method which estimates the state
vectors representing the relationship between the learner’s behavior and those
of other agents in the environment using a technique from system identification,
then the reinforcement learning based on the estimated state vectors is applied
to obtain the optimal behavior policy. However, this method requires re-learning
or adjustment of learning agent’s policy whenever the other agents change their
policies, even if they switch their policies back which the learning agent has al-
ready adjusted before. This problem happens because one learning module can
maintain only one policy.

A multiple learning module approach would provide one solution for this
problem. If we can assign multiple learning modules to different situations in



which each module can regard the state transition probabilities are consistent,
then the system would provide reasonable performance. There are a number of
works on the multi-learning module systems.

Singh [2, 3] has proposed compositional Q-learning in which an agent learns
multiple sequential decision tasks with multi learning modules. Each module
learns its own elemental task while the system has a gating module for the se-
quential task, and this module learns to select one of the elemental task modules.
Takahashi and Asada [4] proposed a method by which a hierarchical structure
for behavior learning is self-organized. The modules in the lower networks are
organized as experts to move to different categories of sensor value regions and
learn lower level behaviors using motor commands. In the meantime, the mod-
ules in the higher networks are organized as experts which learn higher level
behaviors using lower modules. Each module assigns its own goal state by itself.
However, there is no such measure to identify the situation that the agent can
change modules corresponding to the current situation.

Sutton [5] has proposed DYNA-architecture which integrate world model
learning and execution-time planning. Singh [6] has proposed a method of learn-
ing a hierarchy of models of the DYNA-architectures. The world model is not
for the identification of the situations, but only for improving the scalability of
reinforcement learning algorithms.

Doya et al. [7] have proposed MOdular Selection and Identification for Con-
trol (MOSAIC), which is a modular reinforcement learning architecture for non-
linear, non-stationary control tasks. The basic idea is to decompose a complex
task into multiple domains in space and time based on the predictability of the
environmental dynamics. Each module has a state prediction model and a re-
inforcement learning controller. The models have limited capabilities of state
prediction as linear predictors, therefore the multiple prediction models are re-
quired for the non-linear task. A domain is specified as a region in which one
linear predictor can estimate sensor outputs based on its own prediction capabil-
ity. The responsibility signal is defined by a function of the prediction errors, and
the signals of the modules define the outputs of the reinforcement learning con-
trollers. Haruno et al. [8, 9] have proposed another implementation of MOSAIC
based on multiple modules of forward and inverse models.

In this paper, we propose a method by which multiple modules are assigned
to different situations and learn purposive behaviors for the specified situations
as results of the other agent’s behaviors. We show a preliminary result of a simple
soccer situation in the context of RoboCup.

2 A Basic Idea and An Assumption

The basic idea is that the learning agent could assign one reinforcement learning
module to each situation if it can distinguish a number of situations in which
the state transition probabilities are consistent. We introduce a multiple learning
module approach to realize this idea. A module consists of a learning component



which models the world and an execution-time planning one. The whole system
will follow these procedure simultaneously.

– find a model which represents the best estimation among the modules,
– update the model, and
– calculate action values to accomplish a given task based on dynamic pro-

gramming (DP).

As a preliminary experiment, we prepare a case of ball chasing behavior with
collision avoidance in the context of RoboCup. The problem here is to find the
model which can most accurately describe the opponent’s behavior from the
view point of the learning agent. It may take a time to distinguish the situation,
then, we put an assumption.

– The policy of the opponent might change match by match but is fixed during
one match.

3 A Multi-Module Learning System
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Fig. 1. A multi-module learning system and an architecture of a module

Fig.1(a) shows a basic architecture of the proposed system, that is, a multi-
module reinforcement learning one. Each module has a forward model (predictor)
which represents the state transition model and a behavior learner (policy plan-
ner) which estimates the state-action value function based on the forward model
in the reinforcement learning manner. This idea of combination of a forward
model and a reinforcement learning system is similar to the H-DYNA architec-
ture [6] or MOSAIC [7–9]. In other words, we extend such architectures to an
application of behavior acquisition in the multi-agent environment.

The system selects one module which has the best estimation of the state
transition sequence by activating a gate signal corresponding to a module and
by deactivating the goal signals of other modules, and the selected module sends
action commands based on its policy.



3.1 Predictor

In this experiment, the agent recognizes a ball, a goal, and the opponent in the
environment. The state space of the planner consists of features of all objects in
order to calculate state values (discounted sum of the reward received over time)
for each state and action pair. However, it is impractical to maintain a full size
state transition model for real robot applications because the size of state-action
space becomes easily huge and it is really rare to experience all state transitions
within the reasonable learning time.

In general, the motion of the ball depends on the goal and the opponent
because there are interactions between the ball, the goal, and the opponent.
However, the proportion of the interaction time is much shorter than that of non-
interaction time. Therefore, we assume that the ball motion is independent from
the goal and the opponent. Further, we assume that the opponent motion from
the viewpoint of the agent seems independent from the ball and the goal positions
and to depend on only the learning agent’s behavior even if the opponent’s
decision may depend on the ball and/or the goal positions. If the system has
maintain the forward models of the ball, the goal, and the opponent separately,
the each model can be much more compact and it is easy to experience most
state transition within reasonable learning time.

Fig.1 (b) shows an architecture of one module in our system. As mentioned
above, the module has three forward models for the ball, the goal, and the
opponent. We estimate the state transition probability P̂a

ss′ for the triplet of
state s, action a, and next state s′ using the following equation:

P̂
a
ss′ = P̂

a
bsbs′ · P̂

a
gsgs′ · P̂

a
osos′ , (1)

where a state s ∈ S is a combination of three states in the ball state space
bs ∈ bS, the goal state space gs ∈ gS, and the opponent state space os ∈ oS. The
system has not only the state transition model but also a reward model R̂a

ss′ .
We simply store all experiences (state-action-next state sequences) to esti-

mate these models. According to the assumption mentioned in 2, we share the
state transition models of the ball and the goal and the reward model among the
modules, and each module has its own opponent model. This leads to further
compact model representation.

3.2 Planner

Now we have the estimated state transition probabilities P̂a
ss′ and the expected

rewards R̂a
ss′ , then, an approximated state-action value function Q(s, a) for a

state action pair (s, a) is given by

Q(s, a) =
∑

s′

P̂
a
ss′

[

R̂
a
ss′ + γ max

a′

Q(s′, a′)
]

, (2)

where P̂a
ss′ and R̂a

ss′ are the state-transition probabilities and expected rewards,
respectively, and the γ is the discount rate.



3.3 Gating Signals

The basic idea of gating signals is similar to Tani and Nolfi’s work [10] and the
MOSAIC architecture [7–9]. The gating signal of the module becomes larger if
the module performs better state transition prediction during a certain period,
else smaller. We assume that the module which performs best state transition
prediction has the best policy against the current situation because the planner
of the module is based on the model which describes the situation best. In our
proposed architecture, the gating signal is used for the gating the action outputs
from modules. We calculate the gating signals gi of the module i as follows:

gi =
0

∏

t=−T+1

eλpt
i

∑

j eλpt
j

where pi is the occurrence probability of the state transition from the previous
(t−1) state to the current (t) one according to the model i, and the λ is a scaling
factor.

4 Experiments

We have studied the preliminary experiments so far. The task of the learning
agent is to catch the ball while it avoids the collision with an opponent.

4.1 Setting

Opponent agent

Ball

Learning agent

(a) Top view of the field (b) Captured image of the camera
with a omni-directional mirror

Fig. 2. Simulation Environment

We apply the proposed system to a mobile robot which participates in the
RoboCup middle size league. The robot has an omni-directional camera system.
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Fig. 3. State-action space

A simple color image processing is applied to detect an ball area and an opponent
one in the image in real-time (every 33ms). The driving mechanism is a PWS
(Power Wheeled System); the vehicle is fitted with two differential wheels. The
wheels are driven independently by separated DC motors, and two extra free
wheels ensure the static stability. Figure 2 (a) shows one of situations in which
the learning agent encounters and Figure 2 (b) shows the simulated captured
image of the camera with the omni-directional mirror mounted on the robots.
The larger box indicates the opponent and the smaller one indicates the ball.

The state space is constructed in terms of the centroids of the ball and the
opponent on the image (Figure 3 (a)). The action space is constructed in terms of
two torque values to be sent to two motors corresponding to two wheels (Figure
3 (b)). These parameters of the robot system are unknown to the robot, and
it tries to estimate the mapping from sensory information to appropriate motor
commands by the method.

The opponent has a number of behaviors such as “stop”, “move left”, and
“move right”, and switches them randomly after a fixed period. The learning
agent has models to those behaviors of the opponents. The learning agent be-
haves randomly while it gathers the data of the ball and the opponent image
positions and builds up the models of them.

4.2 Simulation Result

Table 1. Comparison of the success rates between the agent with multi-module system
and one with one-module system

system success rate

multi-module 61 %
one-module 50 %
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Fig. 4. A sequence of a chasing behavior
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Fig. 5. A sequence of gating signal while the agent executes its learned policy

We have applied the method to a learning agent and compared the other
agent which has only one learning modules. Table 1 shows the success rate of
these two system after the learning. The success indicates that the learning agent
successfully catches the ball with collision avoidance while the opponent moves
randomly. The success rate indicates the number of successes in the one hundred
trials. The multi-module system shows better performance than the one-module
system. Figure 4 shows an example sequence of the behavior when the agent
executes its learned policy and the opponent behaves randomly after a fixed
period. Figure 5 shows the sequence of the gating signal (the opponent’s behavior
estimation) during the behavior. The arrows and alphabet indexes at the bottom
correspond to the indexes of the figure 4. The agent seems to fail to estimate the
opponent’s behavior at the beginning and end periods, however, it accomplishes



the given task. This mean that even if the agent fails to estimates the other
agent’s behavior, there is no problem in some situations where the learning
agents policy does not depends on the other agent’s behavior. For example, the
opponent’s behavior does not depend on the agent’s behavior when the ball is
near and the opponent is far from the agent. In such a case, the agent does not
have to estimate the other’s behaviors correctly.

5 Conclusion

In this paper, we proposed a method by which multiple modules are assigned to
different situations and learn purposive behaviors for the specified situations as
results of the other agent’s behaviors. We have shown a preliminary result of a
simple soccer situation in the context of RoboCup.
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