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Abstract— We propose a hierarchical multi-module lean-
ing system based on self-interpretation of instructions given
by a coach. The proposed method enables a robot (i) to
decompose a long term task that needs various kinds of
information into a sequence of short term subtasks that need
much less information through its self-interpretation process
for the instructions given by the coach, (ii) to select sensory
information needed for each subtask, and (iii) to integrate
the learned behaviors to accomplish the given long term task.
We show a preliminary result from a simple soccer situation
in the context of RoboCup [1].

I. I NTRODUCTION

Reinforcement learning (hereafter, RL) is an attractive
method for robot behavior acquisition with little or no
a priori knowledge and higher capability of reactive and
adaptive behaviors [2]. However, single and straightfor-
ward application of RL methods to real robot tasks is
difficult owing to the need for almost endless exploration
that scales exponentially with the size of the state/action
space, which seems almost impossible from a practical
viewpoint.

Fortunately, a long time-scale behavior might often
be decomposed into a sequence of simple behaviors in
general, and therefore, the search space can be divided
into smaller search spaces. Connell and Mahadevan [2]
decomposed whole behaviors into sub-behaviors, each
of which can be independently learned. However, task
decomposition and behavior switching procedures are
given by the designers. Morimoto and Doya [3] applied a
hierarchical RL method by which an appropriate sequence
of subgoals for the task is learned in the upper level while
behaviors to achieve the subgoals are acquired in the lower
level. In their system, the human designer has to define
the subtasks based on their own experiences and insights.
Doya et al. [4] have proposed MOdular Selection And
Identification for Control (MOSAIC), which is a modu-
lar RL architecture for non-linear, non-stationary control
tasks. However, all learning modules share the same state
space. Takahashi and Asada [5], [6] proposed a multi-
layered RL system. The modules in the lower networks
are organized as experts to move into different categories
of sensor output regions and learn lower level behaviors
using motor commands. In the meantime, the modules in

the higher networks are organized as experts that learn
higher level behaviors using lower modules. However,
this system tends to produce not only purposive behavior
learning modules but also many non-purposive ones, and
as a result, to require large computational resources.

When we develop a real robot that learns various
behaviors in its life, it seems reasonable that a human
instructs or shows some example behaviors to the robot to
accelerate the learning before it starts to learn. Whitehead
[7] showed that instructions given by a coach significantly
improve the learning and reduce the learning time. This
method, called LBW (Learning By Watching), reduces
the exploration space and enables the learner to have the
experience of reaching the goal frequently. Asada et al.
[8] proposed a method, called LEM (Learning from Easy
Missions). The basic idea is that a robot starts to learn in
easy situations to accomplish a given task at the earlier
stages of learning and learns in more difficult situations
at the later stages to accelerate the learning the purposive
behavior. They applied this idea to a monolithic learning
module. To cope with more complicated tasks, this idea
can be extended to a multi-module learning system. That
is, the robot learns basic short term behaviors at the earlier
stages and learns complicated long term behavior at the
later stages based on instructions given by a coach.

In this paper, we propose a behavior acquisition method
based on a hierarchical multi-module leaning system with
self-interpretation of coach instructions. The proposed
method enables a robot to

1) decompose a long-term task into a set of short-term
subtasks,

2) select sensory information needed for the current
subtask,

3) acquire a basic behavior for each subtask, and
4) integrate the learned behaviors into a sequence of

behaviors to accomplish the given long-term task.
We show a preliminary result applied to a simple soccer
situation in the context of RoboCup [1].

II. BASIC IDEA

There is a learner and a coach in a simple soccer
situation (Figure 1). The coach hasa priori knowledge
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Fig. 1. Basic concept: A coach gives instructions to a learner. The
learner follows the instructions and finds basic behaviors by itself.

of tasks to be played by the learner. The learner does
not have any knowledge of the tasks and just follows the
instructions. After some instructions, the learner segments
the whole task into a sequence of subtasks, acquires
a behavior for each subtask, finds the purpose of the
instructed task, and acquires a sequence of behaviors to
accomplish the task by itself. It is reasonable to assume
that the coach will give instructions for easier tasks at
the earlier stages and give ones for complicated tasks at
the later stages, although it does not have anya priori
knowledge about the learning system of the agent.

Figure 2 shows the development of the learning system
through instructions given by a coach at three stages.
When the coach gives new instructions, the learner reuses
the learning modules for familiar subtasks, generates new
learning modules for unfamiliar subtasks at the lower level
and a new module for a sequence of behaviors of the
whole instructed task at the upper level. After learning
at one stage, the learner adds newly acquired learning
modules to the learning module database. The learning
system iterates this procedure from easy tasks to more
complicated ones.

III. H IERARCHICAL MULTI -MODULE LEARNING

SYSTEM

A. Architecture

The basic idea of a multi-layered learning system is
similar to [5], [6]. The details of the architecture has been
extended. The robot prepares learning modules of one
kind, makes a layer with these modules, and constructs
a hierarchy between the layers. The hierarchy of the
learning module’s layers can be regarded as a role of
task decomposition. Each module has a forward model
(predictor) which represents the state transition model, and
a behavior learner (policy planner) which estimates the
state-action value function based on the forward model
in an RL manner (Figure 3(b)). The state and the action
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Fig. 2. The perspective of of development of the learning system with
staged instructions

are constructed using sensory information and motor com-
mands, respectively at the bottom level.

The input to and output from the higher level are the
goal state activation and the behavior command, respec-
tively, as shown in Figure 3. The goal state activationg is
a normalized state value1, and g = 1 when the situation
is the goal state. When the module receives the behavior
commandb from the higher modules, it calculates the op-
timal policy for its own goal, and sends action commands
to the lower module. The action command at the bottom
level is translated to an actual motor command, then the
robot takes an action in the environment.

An approximated state-action value functionQ(s, a) for
a state action pair(s, a) is given by

Q(s, a) =
∑

s′
P̂a

ss′

[
R̂a

ss′ + γ max
a′

Q(s′, a′)
]

, (1)

whereP̂a
ss′ and R̂a

ss′ are the state-transition probabilities
and expected rewards, respectively, and theγ is the
discount rate.

B. A Learning Procedure

The steps of the learning procedure are as follows:

1The state value function estimates the sum of the discounted reward
received over time when the robot takes the optimal policy, and is
obtained byQ learning.
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Fig. 3. A multi-layered learning system

1) The coach instructs some example behaviors to
accomplish a task.

2) The learner evaluates the availability of learned
behaviors to accomplish the task by watching the
examples.

3) The learner segments the task into subtasks, pro-
duces new learning modules at the lower layer if
needed, and learns the behavior for each.

4) The learner produces a learning module at the higher
layer and learns the whole behavior to accomplish
the task.

5) Go to step 1.

C. Availability Evaluation

The learner needs to evaluate the availability of learned
behaviors that help to accomplish the task by itself because
the coach neither knows what kind of behavior the learner
has already acquired directly nor shows perfect example
behavior from the learner’s viewpoint. The learner should
evaluate a module as valid if it accomplishes the subtask
even if the greedy policy seems different from the example
behavior. Now, we introduceQ in order to evaluate how
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Fig. 4. Availability identification during the given sample behavior

suitable the module’s policy is to the subtask:

Q(s, ae) =
Q(s, ae)−mina′ Q(s, a′)

maxa′ Q(s, a′)−mina′ Q(s, a′)
, (2)

where ae indicates the action taken in the instructed
example behavior.Q becomes larger ifae leads to the
goal state of the module; it becomes smaller ifae leaves
the goal state. Then, we prepare a thresholdQth, and
the learner evaluates the module as valid for a period
if Q > Qth. If there are modules whoseQ exceeds
the thresholdQth simultaneously, the learner selects the
module which keepsQ > Qth for longest period among
the modules (see Figure 4).

D. Generating new learning modules

If there is no module which hasQ > Qth for a period,
the learner creates a new module which will be assigned to
the subtask that has not yet been learned for the period.
To assign a new module to such a subtask, the learner

(v
al

ue
 o

f s
ta

te
 v

ar
ia

bl
e)

t

t

Q_

new learning modules are needed

∆t

∆s

s
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identifies the state space and the goal state. The following
shows the steps briefly.

1) Prepare a set of state spacesS and, set their prior-
ities asSi : i = 1, 2, · · · .

2) For each state spaceSi,

a) Estimate a goal state spaceG in the state space
Si based on the instructed example behaviors.

b) If the estimated goal state spaceG covers all
of the state spaceSi, incrementi and goto step
(a).

c) Construct a learning module and calculateQ
values.

d) Check the performance of the learned behavior
for the subtask. If the success rate is low,
incrementi and go to step (a).

3) Add a new module based on the state spaceSi and
the goal state spaceG.

4) Check the availability of modules for the given task.
If there is a period where there is no available
module, go to step 1.

5) Exit.

State Variables Selection:We introduce heuristics and
set priorities to the set of state spaces as follows:

1) Only a few state variables are needed for all sub-
tasks even if a large number of state variables are
necessary for the whole task: We limits the number
of variables to only three in this study.

2) Higher priority is assigned to a state variable that
changes largely from the start to the end during the
example behaviors because it can be regarded as an
important variable to accomplish the subtask (see
Figure 5).

3) Higher priority is assigned to the state space that has
smaller average of entropyH(s, a) (see equation
3) of the state transition probabilityP a

ss′ for the
experienced transition.

H(s, a) = −
∑

s′∈S

P a
ss′(s, a, s′)log2P

a
ss′(s, a, s′)

(3)
The reason is that the learning module acquires a
more purposive behavior with a more stable state
transition probability which has lower entropy [9].

Goal State Space Selection:It is hard to specify the goal
state of the subtask with a limited number of experiences
of example behaviors. We need other heuristics for that.

• A state variable of the goal state tends to be the
maximum, the minimum, or the medium.

• If the value of a variable has no consistency at the
terminal state of the example behavior, the variable
is largely independent of the goal state.

The system produces a reward model based on these
heuristics.
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Fig. 6. Definition of goal state

Performance Evaluation:Even if we got a module with
a proper policy based on the state transition model and
reward model, there is no assurance that the module has
acquired sufficient performance for the subtask. Before
the system adds a new module to the available module
database, it checks the success rate of the module. If the
success rate is low, the system discards the module.

E. Learning behavior coordination
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Fig. 7. An example state transition on upper layer state space

After the procedures mentioned above, there should be
necessary and sufficient modules at the lower layer, for



the learning system to put a new learning module at the
upper layer, and the module learns to coordinate the lower
modules. The upper module has a state space constructed
with the goal state activations of the lower modules. A set
of actions consists of commands to the lower modules.
For example there are three modules at the lower level
(say LM1, LM2, andLM3), then the upper module has
a state space based on their goal state activations (sayg1,
g2, and g3). Figure 7 shows an example state transition
on the upper layer state space. At the initial situation, all
lower modules activate low. The system sends a command
to the moduleLM1, then the goal state activation ofLM1,
that is g1, goes up. AfterLM1 finishes its own task, the
upper module sends a command to the moduleLM2, and
accomplishes the whole task by finally activatingLM3 at
last.

IV. EXPERIMENTS

A. Setting

(a) A real robot and
a ball

Opponent agent

Ball

Learning agent

(b) Top view of the field

(c) Simulated camera
image with a omni-
directional mirror

Fig. 8. Real robot and simulation environment

Figure 8 (a) shows a mobile robot we have designed and
built. The robot has an omni-directional camera system.
Simple color image processing is applied to detect the
ball area and the opponent in the image in real-time
(every 33 msec). Figure 8 (b) shows a situation that the
learning agent can encounter and Figure 8 (c) shows the
simulated image of the camera with the omni-directional
mirror mounted on the robot. The larger and smaller
boxes indicate the opponent and the ball, respectively. The
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Fig. 9. Example behaviors for task 1

LM [S(Ab, θb) : G(Max, Front)]

World
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Fig. 10. Acquired hierarchical structure (task 1)

robot has a driving mechanism, a PWS (Powered Wheel
Steering) system.

The following state variables are prepared in advance:

Ai area of objecti on the image
θi angle to objecti from the center of image
Aij difference of areas between objectsi and j
θij difference of angles between objectsi and j

These variables are normalized to[0 : 1]. The values of
the area are quantized into 30 levels and the angle into
12 levels. The action space is constructed in terms of two
torque values to be sent to two motors corresponding to
two wheels.

B. Learning Scheduling and Experiments

The robot receives instructions for the tasks in the order
given below:

Task 1:ball chasing
Task 2:shooting the ball into the goal without obstacles
Task 3:shooting the ball into the goal with an obstacle
1) Task 1: ball chasing:First, the coach gives some

instructions for the ball chasing task. There is the learner,
a ball, the learner’s goal, and the opponent’s goal. Figure
9 shows instructed behaviors for this task. According



to the learning procedure mentioned inIII , the system
produce one moduleLM [S(Ab, θb) : G(Max ,Front)],
whereS(Ab, θb) indicates that the state space consists of
the area of ballAb and the angle of the ballθb from the
center of the image, andG(Max ,Front) indicates that
the goal state is one whereAb is the maximum value and
θb is the front of the robot. So this module acquired the
behavior of ball chasing. Figure 10 shows the constructed
system for task 1.
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Fig. 11. Example behaviors for task 2
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2) Task 2: shooting a ball into the goal without ob-
stacles: At the second stage, the coach gives some in-
structions for the shooting task. Figure 11 shows example
behaviors for this task, and Figures 12 and 13 show the
Qs for the learning modules during the example behav-
ior performance before and after the addition of a new
module, respectively. The arrows on the top of each series
indicate the behavior of the instruction given by the coach.
There is no valid module during the period of time from
1.7 to 2.8 seconds. The learner produces another module
LM [S(Ab, θb, θbog) : G(Max ,Don ′t care,Min)] during
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the period, whereS(Ab, θb, θbog) indicates that the state
space consists of the area of the ball, the angle of the
ball from the center of the image, and the difference
between the angle of the ball and one of the goals, and
G(Max ,Don ′t care,Min) indicates that the goal state is
one for whichAb is the maximum value,θb is “Don’t
care,” and θbog is the minimum value. This means that
the module has a policy of going around the ball until
the directions to the ball and the goal become the same.
Figure 14 shows the constructed hierarchical system for
this task 2. The upper module coordinates these two
modules to accomplish the shooting task. Figure 15 shows
the acquired behaviors for the task, and Figure 16 shows
the transitions of goal state activations and the selected
learning module during the behavior performance.
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Fig. 15. Learned behaviors for task 2
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module (task2)

3) Task 3: shooting a ball into the goal with
an obstacle: At the last stage, the coach gives
some instructions for the shooting task with obsta-
cle avoidance. Figure 17 shows example behaviors
for this task. The learner produces another mod-
ule LM [S(Aop, θop, θogop):G(Max,Don′t care, Max)],
where S(Aop, θop, θogop) indicates that the state space
consists of the area of opponentAop, the angle of the op-
ponent from the center of the imageθop, and the difference
between the angle of the opponent and the goalθogop, and
G(Max,Don′t care, Max) indicates that the goal state
is one for whichAop is the maximum value,θop is “Don’t
care,” and θogop is the maximum value. Then this module
acquired the behavior of going to the intersection between
the opponent and the goal while avoiding collision with
the obstacle. Figure 18 shows the constructed system for
task 3. The upper module enables the robot to shoot a
ball into the goal avoiding the opponent. Figure 19 shows
the acquired behaviors for the task, and Figure 20 shows
the transitions of goal state activations and the selected
learning module during the task accomplishment. After
learning, we applied the learned behavior to the real robot.
Figure 21 shows a sequence of the experiment for the task.
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Fig. 17. Example behaviors for task 3
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V. CONCLUSION

We proposed a hierarchical multi-module learning sys-
tem based on self-interpretation of instructions given by a
coach. We applied the proposed method to our robot and
showed results for a simple soccer situation in the context
of RoboCup.
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