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Abstract

Adaptability to the changes in the environment and the
robot body itself fundamentally depends on the robot body
representation, which is usually given by the designer and
therefore fixed in many cases. In order for the robot to adapt
its body representation to the changes, the robot should have
acquired its own body representation by itself. This paper
argues how the robot can construct such representation, that
is, body scheme or body image from the uninterpreted row
sensory information. Supposing that the invariance in multi
sensory data represents the body, a cross modal map is pro-
posed as the structure which learns the invariance. A pre-
liminary experiment to learn to represent the body surfaces
of the robot by the cross modal mapping between vision and
proprioception is performed and future issues are discussed.

1. Introduction

In the existing methods, the designer usually defines
the representations of the robot body in the Cartesian
coordinate system and needs to calibrate the relation-
ship between the sensorimotor system and the defined
coordinate system. Therefore, it seems difficult for the
robot to adapt itself to the changes in the environment
and its own body. In order for the robot to have such
a capability, it seems a promising approach to provide
the robot with a mechanism of acquiring representa-
tions of its body in its sensorimotor space instead of
the pre-defined body representation by the designer.

Although it is a formidable problem, biological
agents seem to acquire their body representation with-
out any difficulty. There are studies about the body rep-
resentations of biological agents, calledbody scheme
or body image[1, 2, 3, 4]. Although the structure and
acquiring process of them have not been revealed yet,
suggestions from these studies could be helpful to con-
struct the body representation for robots since biolog-
ical agents seem in the same situation without any ex-
plicit knowledge about their own body representation.

As Asada et al. advocated [5], building a robot which
acquires the body representation may also enable to
provide a constructive model of acquiring process of
body scheme/image in human being, and understand-
ing how it works may lead a new design principle of
robots at the same time.

How to find out the body representation in the re-
ceptive field without any interpretation by the designer
is one of the most fundamental problems of acquir-
ing the body scheme. Asada et al. suggested which
the robot body or static environment can be defined in
a way that notes the changes in the image plane that
can be directly correlated with the self-induced mo-
tor command [6] . However, discrimination between
the robot body and static environment was not dealt.
Fitzpatrick and Metta also proposed a similar method
to localize its arm position in the vision by utilizing
the correlation between optic flow and its motor com-
mands [7]. Although they claimed that the robot found
its arm without any knowledge about visual appear-
ance, there seemed a tacit assumption that the designer
needed to give a prior knowledge about the properties
of its DOFs responsible for the camera motion in or-
der to avoid difficulty of discriminating between the
robot body and static environment. These studies im-
plied that the method based on the correlation with the
motion needed some prior knowledge to find its body
from the correlation.

Instead of finding its body representation from the
correlation with its motion, we suggest that the body
can be defined by the invariance in the multi-modal
sensory data caused by the fact that the sensors are em-
bedded in the rigid robot body while the motion plays
a roll of leading experiences to perceive the invariance.
When the robot body is captured in some areas of the
receptive fields, a kind of relation among them is in-
variant with the environmental changes since the body
structure usually does not change in a certain period.
On the other hand, when the captured areas are not
the robot body, the relations among the receptive fields



of the multi modalities depend on the environmental
changes. Therefore, the robot can find its body by
judging whether the multi-modal relation is invariant
or not.

According to this idea, Yoshikawa et al. proposed a
cross modal map which learns to represent the invari-
ance of the cooccurrence of the multi sensor modalities
as the synaptic connections of fully-connected network
of the sensor nodes [8]. However, they assumed that
the visual patterns were segmented by the designer. In
this paper, we begin with the problem how to find out
the body surface in the receptive field of vision. We
introduce a cross modal map by which the robot learns
the invariance in the multi modalities. Based on it, the
robot learns to judge whether the fixating area is its
body or not.

The rest of this paper is organized as follows. First,
we introduce the cross modal map between the vi-
sual and the proprioceptive modalities, and describe a
learning process of it. Then we show the preliminary
experiment using the upper-torso humanoid robot, and
discuss our future work.

2. Cross modal map learning

In this section, we describe our basic idea to find the
body of the robot and introduce the general structure
called cross modal map which learns to represents the
robot body. Then, we implement a cross modal map
between the sensors of postural configuration and the
disparity in the stereo vision in order to find the repre-
sentation of the body surfaces.

2.1. A basic idea

Multi modal sensors of the robot are related with each
other since they are embedded in its body although a
part of the relations depends on the environment. For
example, when it fixates one object in the environ-
ment, the view changes depending on the environmen-
tal changes. However, when it fixates its body, the view
is independent of the environment (see Fig. 1). Our ba-
sic idea in order to find a representation of the body is
learning the invariance of the relation among the multi
modal sensors in a certain period. That is, what is al-
ways observed is its body.

As a structure to find the invariance in the multi
modalities, we introduce a full-connected network
called cross modal map. A cross modal map consists
of various sensor nodes which are hardwired to real
sensor units and have prototype vectors with specific
dimension (see Fig. 2). When real sensors output an
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Figure 1: The invariance/variance of the relationship among
the disparity and the postural configuration in different envi-
ronments ((a) and (b)).

sensor vectorx, the hardwired sensor nodei with a
prototype vectorxi outputs an activationai given by
the equation,

ai = exp(||x− xi||/σ2), (1)

where||x − xi|| is the distance of the vectors,σ is a
scalar constant. The synaptic weightwij between node
i andj is updated according to the following equation,

τẇij = −wij + caiaj , (2)

whereτ is a time constant of learning,c is a learning
rate. Based on the updating law (eq. (2)),wij is con-
verged such as

wij = cE{aiaj}, (3)

whereE{aiaj} is the average ofaiaj [9] . Actually,
we use the discretizing version of the updating low (eq.
(2)) such as,

wij(t + 1) = wij(t) +
1
τ

(ai(t)aj(t)− cwij(t)), (4)

wheret denotes the time stamp.

Based on this learning low, only the synaptic
weights between the nodes which are simultaneously
activated in a certain period are increased. Therefore,
the connections which have large synaptic weight rep-
resent the body.

2.2. An implementation of a cross modal map

Suppose that a robot hasm DOFs and stereo cameras,
and that the center of the left camera is an fixation
point. Let the disparity of the fixation point bed and
the postural configuration of it beθ ∈ <m. When the
posture of the learner isθ, if the fixation point is on the
body, d is constant even if the environment changes,
elsed changes for different ones (see Fig. 1). Accord-
ing to this idea, the learner can find its body where the
relation betweend andθ is invariant.
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Figure 2: Elements of the cross modal map, wherei, j, k,and
l define ID of nodes,d,� denote the type of hardwired sen-
sors, andw denotes the synaptic weights. Here,i andj are
disparity nodes whilek andl are posture nodes.

A cross modal map consists of the two types of sen-
sor nodes (see Fig. 2). A “disparity node”i(j) hard-
wired to the sensor of the disparity of the fixation point
has a prototype vectorsdi(dj), as well as a “posture
node” k(l) hardwired to the sensors of the postural
configuration has a prototype vectorθk, (θl).

By learning through the experiences to fixate various
objects and moving around, only the synaptic weights
between the nodes which are activated when the fix-
ation point is on its body are increased. Therefore,
it can judge whether the fixation point is its body or
not by checking whether the synaptic weight between
the postural node corresponding to the current postural
configuration and a disparity node is sufficiently large.

3. Experiment

We use upper-torso humanoid robot (see Fig. 3)
for preliminary experiments. Based on the proposed
method, it learns a cross modal map that represents its
body surface through experiences to fixate the various
objects and move around in the environment.

3.1. Experimental setup

The robot has two cameras (SONY, CCB-EX37),
stereo-camera head which rotates in the pan/tilt/roll
axes, a couple of 4-DOF arms, and a PC (Pentium II
400MHz) to control them. They are on a mobile base
(Nomad150) which has facilities to moving around.
Fig. 3b shows a view of it. The disparity of the fix-
ation point is calculated in every frame when the both
camera captures the same object.
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Figure 3: An overview and an egocentric view of the upper-
torso humanoid robot and the environment of learning.
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Figure 4: An overview of the experimental system.

3.2. Learning process and a result

As mentioned in the section 2, the robot will learn
the cross modal map through the experiences of fix-
ating various objects and moving around in the envi-
ronment independent of its DOFs. We shows a section
of the acquired cross modal map in which the postu-
ral configuration of the arms is a certain values (see
Fig. 5), since the acquired one which consists of the
high dimensional posture nodes is not comprehensible
for the experimenter. Fig. 5 shows which disparity
node have the largest connection with which posture
nodes as a function of the disparity with respect to an-
gles of the camera head. The range of the disparity
(d = −128 ∼ 128)) is divided into15 prototype vec-
tors of the disparity nodes, and the range of the angles
(pan = −45 ∼ 45[deg], tilt = 10 ∼ 70) is divided
into 20 × 15 vectors which is the elements of the pos-
ture nodes. In the learning process, the random control
signals are sent to the camera head to fixate the various
points and the mobile base to move around for about
six minutes. The weights are updated 5875 times.

Fig. 5 is similar to one of the robot body which is
observed in the real view of the robot (see Fig. 3b).
The fixation areas of which disparity nodes have strong
connections (large weights) to the posture nodes were
parts of the robot body. Therefore, the acquired cross



modal map represents the body surface of the learner.
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Figure 5: Activations of the disparity nodes of the acquired
map.

4. Discussion and Conclusion

In this paper, we introduce the cross modal map which
learns the invariance in the multi modal sensory data
without any explicit knowledge, according to our con-
sideration that such invariance represents the body.
The acquired cross modal map can be used for judg-
ing whether the fixation point is its body or not. Al-
though we cope with the cross modal map between the
visual and the proprioceptive modalities, other modali-
ties, for example tactile, could be used for learning the
body representation.

As mentioned in the introduction, we aim at build-
ing a constructive model of the body scheme/image in
biological agents. Although we do not have sufficient
one in the current stage, we conjecture that the repre-
sentation of what is always observed in a certain pe-
riod is one of the elements which constitutes the body
scheme/image. In the neuroscience study [2], the ex-
perimenter trained macaque monkeys to use tools and
found bimodal neurons which seemed to represent im-
age of the hand into which the tool was incorporated
as its extension. This discovery does not conflict with
our conjecture because the tools is always observed in
the same way during their use. However, the activa-
tions of the bimodal neurons were depend on the in-
tention of monkeys to use them. It may means that we
should improve the structure of the cross modal map to
be modifiable for tasks.

Although the acquired representation is only able to
be used for judging whether the fixation point is its
body or not, how to describe the task in the sensory-
motor space, that is in the cross modal map, is one of
the future work. In addition, we also need to cope with
the problem how the robot can acquire some represen-
tation of its body part without the designer’s explicit
knowledge. For these problems, it seems necessary to

integrate the multi sensor modalities including tactile
and the task performing and evaluating system.
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