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Abstract

In an experiment with a soccer playing robot, peri-
odic temporally-constrained nonlinear principal compo-
nent neural networks (NLPCNNs) are shown to character-
ize humanoid motion effectively by exploiting fundamental
sensorimotor relationships. Each network learns a periodic
or transitional trajectory in a phase space of possible ac-
tions, and thus abstracts a kind of protosymbol.NLPCNNs
can play a key role in a system that learns to imitate peo-
ple, enabling a robot to recognize the behavior of others
because it has grounded that behavior in terms of its own
bodily movements.

1. Introduction

Human motion is fundamentally periodic. While walk-
ing is the prototypical example, virtually any human ac-
tivity involves periodicity — including the unique series of
bodily movements that begins with getting up in the morn-
ing and ends with retiring at night — because the skeletal
structure deviates from and returns to a given configuration.
Representational forms that best match the inherent senso-
rimotor constraints of biological systems, such as periodic-
ity and spatiotemporal continuity, produce more appropri-
ate abstractions with less computation than representational
forms that do not.

Nonlinear principal component neural networks
(NLPCNNs), augmented with periodic and temporal con-
straints, provide an effective means of characterizing the
motions of humans and other animals. These networks
may be used to recognize, learn, and respond to behavior.
A single network abstracts a particular type of periodic
motion from joint angles and other proprioceptive data. A
different network learns a different type of periodic motion
until all the various kinds of motion have been learned.

Networks also learn transitions between motion patterns.
Once augmented with distributed regulators that set up
appropriate flow vectors, learned trajectories correspond to
basins of attraction in a phase space of possible actions.

Section 2 extends anNLPCNN with periodic and tempo-
ral constraints. Section 3 presents a method of assigning
observations toNLPCNNs to segment proprioceptive data.
Section 4 reports experimental results usingNLPCNNs to
characterize the behavior of a FujitsuHOAP-1 humanoid
robot that has been developed to play RoboCup soccer. Sec-
tion 5 discusses howNLPCNNs fit into a system that imitates
human behavior as an integral part of the “mimesis loop.”

2. A periodic nonlinear principal component
neural network

The human body has 244 degrees of freedom [13] and
a vast array of proprioceptors. Excluding the hands, a
humanoid robot generally has at least 20 degrees of free-
dom — and far more dimensions are required to describe its
dynamics precisely. However, many approaches to control-
ling the dynamics of a robot are only tractable when sensory
data is encoded in fewer dimensions (e.g., [9]). Fortunately,
from the standpoint of a particular activity, the effective di-
mensionality may be much lower.

Given a coding functionf : RN 7→ RP and decoding
functiong : RP 7→ RN that belong to the sets of continuous
nonlinear functionsC andD, respectively, whereP < N ,
nonlinear principle component networks minimize the error
functionE ‖~x− g(f(~x))‖2, ~x ∈ RN

resulting inP principal components[y1 · · · yp] = f(~x).
Kramer [5] first solved this problem by training a multilayer
perceptron similar to the one shown in Figure 1 using the
backpropagation of error, although a second order method
such as conjugant gradient analysis converges to a solution
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Figure 1. Target values presented at the output layer
of a nonlinear principal component neural network are
identical to input values. Nonlinear units comprise the
encoding and decoding layers, while either linear or
nonlinear units comprise the feature and output layers.

faster for many large data sets. Tatani and Nakamura [12]
were the first to apply anNLPCNN to human and humanoid
motions, though for dimensionality reduction only.

Nonlinear principal components analysis, unlikePCA

(Karhunen-Lòeve expansion), which is a special case where
C andD are linear, does not have a unique solution, and no
known computational method is guaranteed to find any of
the globally optimal solutions. Nevertheless, for a 20-DoF
humanoid robot, a hierarchically-constructed1 NLPCNN has
been shown to minimize error several times more thanPCA

when reducing to two-to-five dimensions [12].

2.1. The periodicity constraint

Because the coding functionf of an NLPCNN is con-
tinuous,(1) projections to a curve or surface of lower di-
mensionality are suboptimal;(2) the curve or surface can-
not intersect itself (e.g., be elliptical or annular); and(3)
projections do not accurately represent discontinuities [8].
However, since the physical processes underlying motion
data are continuous, discontinuities do not need to be mod-
elled. Discontinuities caused by optimal projections can
create instabilities for control algorithms (e.g., they allow
points along the axis of symmetry of a parabola to be pro-
jected to either side of the parabola). Moreover, anNLPCNN

with a circular node [10][11] at the feature layer can learn
self-intersecting curves and surfaces.

Kirby and Miranda [4] constrained the activation values
of a pair of nodesp andq in the feature layer of anNLPCNN

to fall on the unit circle, thus acting as a single angular vari-
able:

r =
√

y2
p + y2

q , yp ← yp/r, yq ← yq/r

The delta values for backpropagation of the circular node-
pair are calculated by the chain rule [4], resulting in the

1The joint encoder dimensionality of limbs is independently reduced,
then the arms and the legs are paired and their dimensionality further re-
duced, and then finally the dimensionality of the entire body.

update rule

δp ← (δpyq − δqyp)yq/r3, δq ← (δqyp − δpyq)yp/r3

at the feature layer.
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Figure 2. The popular hyperbolic tangent activation
function y ← 1.7159 tanh( 2

3
y) can be approximated

by a pair of circular nodes where the activation of the
second node yq is fixed at

√
1.9443 and the activa-

tion of the first node is calculated accordingly yp ←
1.7159yp/

√
y2

p + 1.9443.

The hyperbolic tangent and other antisymmetric func-
tions (i.e.,ϕ(x) = −ϕ(x)) are generally preferred to the
logistic function as the sigmoid in part because they are
compatible with standard optimizations [6].2 In addition,
antisymmetric units can more easily be replaced with linear
or circular units in the feature layer, since these units can
produce negative activations. We propose using a slightly
flatter antisymmetric function for the sigmoidal units with a
similar response characteristic totanh (see Fig. 2). The ad-
vantage of this node is that it can be converted to a circular
node-pair while still making use of its perviously learned
weights.

2.2. The temporal constraint

Neither linear nor nonlinear principal components anal-
ysis represent the time, relative time, or order in which data
are collected.3 This information, when available, can be
used to reduce the number of layers and free parameters
(i.e., weights) in the network and thereby its risk of con-
verging slowly or settling into a solution that is only lo-
cally optimal. Since the activationsyp andyq of the cir-
cular node-pair in the feature layer in effect represent a
single free parameter, the angleθ, if θ is known, we can
train the encoding and decoding subnetworks separately
by presentingk cos(θ) and k sin(θ) as target output val-
ues for the encoding subnetwork and as input values for
the decoding network.4 Once a single period of data has

2These include mean cancellation, linear decorrelation using the K-L
expansion, and covariance equalization.

3Although a temporal dimension could be added to an autoassociative
network, one drawback for online learning is that this dimension would
need to be continuously rescaled as more data is collected to keep it within
the activation range of the nodes.

4k ≈ 1.7 for zero-mean data with variance equal to 1 based on princi-
ples discussed in [6].



been collected, temporal values can be converted to an-
gular valuesθ = 2π tk−t0

tn−t0
for data collected at any arbi-

trary time tk during a period, starting att0 and ending at
tn. A network may similarly learn transitions between peri-
odic movements when using a linear or sigmoidal activation
node in the feature layer because these open-curve transi-
tions do not restrict us to using nodes capable of forming a
closed curve.5 NLPCNNs with a circular feature node remain
useful to identify the period of a motion pattern, especially
when the pattern is irregular and, thus, begins and ends at
points that are somewhat far from each other.

3. Automatic segmentation

We conceived of the automatic segmentation problem as
the problem of uniquely assigning data points to nonlinear
principal component neural networks. It is possible to par-
tition the points without reference to the predictions of the
networks.6 However, for our method each network’s per-
formance influences segmentation with more networks as-
signed to regions that are difficult to learn.

A B

Figure 3. The thick line shows the output of an
NLPCNN and the thin line shows the underlying dis-
tribution. The dots are data points. A. Before learning
converges, allowing the network to learn data points
despite a high prediction error accelerates learning.
B. However, after convergence, it leads to segmenta-
tion errors.

As the robot begins to move, the first network is assigned
some minimal number of data points (e.g., joint-angle vec-
tors), and its training begins with those points. This gets
the network’s learning started quickly and provides it with
enough information to determine the orientation and cur-
vature of the trajectory. If the average prediction error of
the data points assigned to a network is below some thresh-
old, the network is assigned additional data points until that
threshold has been reached. At that point, data points will
be assigned to another network, and a network will be cre-
ated, if it does not already exist. To avoid instabilities, only
a single data point may shift its assignment from one net-
work to another after each training cycle.

5ytarget = 2k( tk−t0
tn−t0

− 1
2
), with k ≈ 1.4.

6For example, data points may be partitioned at the point at which a
trajectory most closely doubles back on itself, if the distance between the
two paths is within a certain threshold and the paths then diverge beyond
another threshold.

j ← 1, bucket ← 1, E ← 0
∀~xi {

train (networkj , ~xi)
Ei = ‖~xi − g(f(~xi))‖2, E ← E + Ei

if ( bucket > Bmax ∨
( learning? (networkj) ∧ E/bucket > Emax ) ∨
Ei > Ei+1 )
j ← j + 1, bucket ← 1, E ← 0 }

Listing 1: Pseudocode for segmentation.

Since a network is allowed to learn more data points as
long as its average prediction error per point is low enough,
it may learn most data points well but exhibit slack near
peripheral or recently learned data points. At the start of
learning, the network should be challenged to learn data
points even when its prediction error is large (see Fig. 3A).
As learning converges, however, the slack leads to segmen-
tation errors (see Fig. 3B). Therefore, we alter the method of
segmentation once the network nears convergence (as deter-
mined by Bayesian methods [7] or crossvalidation) so that
a network may acquire neighboring points if its prediction
error for those points is lower that the network currently as-
signed to those points.

4. Humanoid experiments

We recorded motion data while aHOAP-1 humanoid
robot played soccer in accordance with a hard-coded pro-
gram. Each data point is constituted by a 20-dimensional
vector of joint angles. A standard (noncircular)NLPCNN re-
duced the dimensionality of the data from 20 to 3. We then
applied our algorithm to segment, generalize, and generate
humanoid motion.

Our algorithm uniquely assigned the data points among
a number of circularly-constrainedNLPCNNs. Each of the
networks learned a periodic motion pattern by conjugate
gradients. Our algorithm successfully generalized five out
of six primary motion patterns: walking forward, turning
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Figure 4. Recognized motion patterns embedded in
the dimensions of the first three nonlinear principal
components of an NLPCNN.



right or left, and side-stepping to the right or left. It failed
to generalize as a single periodic trajectory the kicking mo-
tion, which has a highly irregular, self-intersecting shape.
However, human subjects were also unable to determine the
kicking trajectory from the data points.

Figure 4 shows that the automatic segmentation algo-
rithm successfully employed circularNLPCNNs to separate
and generalize five of the periodic motions. (The open-
curve segmentation of transitions between periodic motions
are omitted for clarity.) The periodic trajectories were gen-
erated by varying from0 to 2π the angular parameterθi

at the bottleneck layer of each of the circularly-constrained
networks and mapping the result to the output layer for dis-
play. This demonstrates our method’s capacity to generate
periodic motions. More detailed experiments and a tech-
nique for eliminating redundant segments and their corre-
sponding networks is presented in a companion paper [1].

5. Discussion

An important goal is to develop humanoid robots that are
capable of learning to imitate our behavior while they par-
ticipate in everyday activities. This may be understood as
a mimesis loop [3] (see Fig. 5):(1) attentional mechanisms
support the robot to recognize the body parts of others, and
(2) the robot maps these parts onto its own body.(3) Pe-
riodic NLPCNNs characterize the robots own kinematic or
dynamic motion patterns. In addition, by mapping the bod-
ies of others to its own, it can useNLPCNNs to recognize
their activities. Since each network correspond to a particu-
lar type of motion (i.e., an attractor or a transition between
attractors in a proprioceptive phase space), it can act as a
protosymbol. Thus, the robot is able to recognize the be-
havior of others because it has grounded their behavior in
terms of its own body.(4) Although periodicNLPCNNs may
be used to generate motion patterns, the robot must con-
tinuously respond to unexpected perturbations. There are a
number of approaches to this control problem that do not re-
quire an explicit model (e.g., [2]). Thus, periodicNLPCNNs
may be able to play a central role in a system that recog-
nizes, learns, and responds to patterns of behavior. Whether
they can segment human data, which has higher variance, is
yet to be determined.

References

[1] R. Chalodhorn, K. MacDorman, and M. Asada. Automatic
extraction of abstract actions from humanoid motion data.
In IROS-2004: IEEE/RSJ International Conference on In-
telligent Robots and Systems, Sendai, Japan, September 28–
October 2 Submitted.

[2] T. Fujii. A new approach to the LQ design from the view-
point of the inverse regulator problem.IEEE Transactions
on Automatic Control, 32(11):995–1004, 1987.

Bayesian-wavelet neural networks

Feature selection and classification

Activity of self and others

Dynamics compensation

p

Distributed regulators

Self-other visuo-kinematic mapping Periodic representations in phase space

Nonlinear PC neural networks

p

(2)

(1)

(3)

(4)

Figure 5. Periodic nonlinear principal component net-
works may characterize motion patterns in a much
larger system for recognizing, learning, and respond-
ing behavior.

[3] T. Inamura, I. Toshima, and Y. Nakamura. Acquiring motion
elements for bidirectional computation of motion recogni-
tion and generation. In B. Siciliano and P. Dario, editors,
Experimental Robotics VIII, pages 372–381. Springer, 2003.

[4] M. J. Kirby and R. Miranda. Circular nodes in neural net-
works. Neural Computation, 8(2):390–402, 1996.

[5] M. A. Kramer. Nonlinear principal component analysis us-
ing autoassociative neural networks.Journal of the Ameri-
can Institute of Chemical Engineers, 37(2):233–243, 1991.

[6] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. M̈uller. Efficient
BackProp. In G. B. Orr and K.-R. M̈uller, editors,Neural
Networks: Tricks of the Trade, pages 1–44. Springer, 1998.

[7] D. J. MacKay. Probable networks and plausible predictions:
A review of practical Bayesian methods for supervised neu-
ral networks. Network: Computation in Neural Systems,
6:469–505, 1995.

[8] E. C. Malthouse. Limitations of nonlinear PCA as per-
formed with generic neural networks.IEEE Transactions
on Neural Networks, 9(1):165–173, 1998.

[9] M. Okada, K. Tatani, and Y. Nakamura. Polynomial de-
sign of the nonlinear dynamics for the brain-like information
processing of whole body motion. InIEEE International
Conference on Robotics and Automation, pages 1410–1415,
2002.

[10] S. Ridella, S. Rovetta, and R. Zunino. Adaptive internal rep-
resentation in circular back-propagation networks.Neural
Computing and Applications, 3(4):222–333, 1995.

[11] S. Ridella, S. Rovetta, and R. Zunino. Circular backprop-
agation networks for classification.IEEE Transaction on
Neural Networks, 8(1):84–97, 1997.

[12] K. Tatani and Y. Nakamura. Dimensionality reduction and
reproduction with hierarchical NLPCA neural networks ex-
tracting common space of multiple humanoid motion pat-
terns. InProceedings of the IEEE International Conference
on Robotics and Automation, pages 1927–1932, Taipei, Tai-
wan, September 2003.

[13] V. M. Zatsiorsky. Kinematics of Human Motion. Human
Kinetics, Urbana Champaign, 2002.


