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Abstract. This paper proposes a new algorithm for the automatic segmenta-
tion of motion data from a humanoid soccer playing robot that allows feed-
forward neural networks to generalize and reproduce various kinematic patterns,
including walking, turning, and sidestepping. Data from a 20 degree-of-freedom
Fujitsu HOAP-1 robot is reduced to its intrinsic dimensionality, as determined
by the ISOMAP procedure, by means of nonlinear principal component analysis
(NLPCA). The proposed algorithm then automatically segments motion patterns
by incrementally generating periodic temporally-constrained nonlinearPCA neu-
ral networks and assigning data points to these networks in aconquer-and-divide
fashion, that is, each network’s ability to learn the data influences the data’s di-
vision among the networks. The learned networks abstract five out of six types
of motion without any prior information about the number or type of motion
patterns. The multiple decoding subnetworks that result can serve to generate
abstract actions for playing soccer and other complex tasks.

1 Introduction

The development of robots that can learn to imitate human behavior as they participate
in social activities is important both for understanding ourselves as a species and for
transforming society through the introduction of new technologies. A mimesis loop
[1] may be used to capture many aspects of this kind of imitative learning. This paper
addresses one aspect of the mimesis loop: the abstraction of a robot’s own kinematic
motions from its proprioceptive experience.

Figure 1 roughly outlines how a mimesis loop might be realized in a soccer play-
ing robot. Attentional mechanisms direct the robot’s sensors toward the body parts of
other players, and the robot maps successfully recognized body parts onto its own body
schema. This paper introduces a method to abstract the robot’s own kinematic patterns:
our segmentation algorithm allocates proprioceptive data among periodic temporally-
constrained nonlinear principal component neural networks (NLPCNNs) as they form
appropriate generalizations.

NLPCNNs, augmented with periodic and temporal constraints, provide an effective
means of characterizing many typical human motions. These networks may be used to



recognize, learn, and respond to behavior. A single network abstracts a particular type
of periodic motion from joint angles and other proprioceptive data. A different network
learns a different type of periodic motion until all the various kinds of motion have been
learned. Networks can also learn transitions between motion patterns.
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Fig. 1. Periodic nonlinear principal component networks may characterize motion patterns in a
much larger system for recognizing, learning, and responding behavior.

The robot can useNLPCNNs to recognize the activities of other players, if the map-
ping from their bodies to its own has already been derived by some other method. Since
each network correspond to a particular type of motion in a proprioceptive phase space,
it can act as a protosymbol. Thus, the robot would be able to recognize the behavior of
others because it has grounded their behavior in terms of its own body.

Although periodicNLPCNNs may be used to generate motion patterns, the robot
must continuously respond to unexpected perturbations. There are a number of ap-
proaches to this control problem that do not require an explicit model. For example,
distributed regulators [2] could set up flow vectors around learned trajectories, thus,
converting them into basins of attraction in a phase space of possible actions.

This paper is organized as follows. Section 2 extends anNLPCNN with periodic
and temporal constraints. Section 3 presents a method of assigning observations to
NLPCNNs to segment proprioceptive data. Section 4 reports experimental results us-
ing NLPCNNs to characterize the behavior of a FujitsuHOAP-1 humanoid robot that has
been developed to play RoboCup soccer.



2 A periodic nonlinear principal component neural network

The human body has 244 degrees of freedom [3] and a vast array of proprioceptors. Ex-
cluding the hands, a humanoid robot generally has at least 20 degrees of freedom — and
far more dimensions are required to describe its dynamics precisely. However, many ap-
proaches to controlling the dynamics of a robot are only tractable when sensory data is
encoded in fewer dimensions (e.g., [4]). Fortunately, from the standpoint of a particular
activity, the effective dimensionality may be much lower.
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Fig. 2. Target values presented at the output layer of a nonlinear principal component neural
network are identical to input values. Nonlinear units comprise the encoding and decoding layers,
while either linear or nonlinear units comprise the feature and output layers.

Given a coding functionf : RN 7→ RP and decoding functiong : RP 7→ RN

that belong to the sets of continuous nonlinear functionsC andD, respectively, where
P < N , nonlinear principle component networks minimize the error functionE

‖x− g(f(x))‖2, x ∈ RN

resulting inP principal components[y1 · · · yp] = f(x). Kramer [5] first solved this
problem by training a multilayer perceptron similar to the one shown in Figure 2 us-
ing the backpropagation of error, although a second order method such as conjugant
gradient analysis converges to a solution faster for many large data sets. Tatani and
Nakamura [6] were the first to apply anNLPCNN to human and humanoid motions,
though for dimensionality reduction only.

Nonlinear principal components analysis, unlikePCA (Karhunen-Lòeve expansion),
which is a special case whereC andD are linear, does not have a unique solution,
and no known computational method is guaranteed to find any of the globally optimal



solutions. Nevertheless, for a 20-DoF humanoid robot, a hierarchically-constructed1

NLPCNN has been shown to minimize error several times more thanPCA when reducing
to two-to-five dimensions [6].

2.1 The periodicity constraint

Because the coding functionf of an NLPCNN is continuous,(1) projections to a curve
or surface of lower dimensionality are suboptimal;(2) the curve or surface cannot inter-
sect itself (e.g., be elliptical or annular); and(3) projections do not accurately represent
discontinuities [7]. However, since the physical processes underlying motion data are
continuous, discontinuities do not need to be modelled. Discontinuities caused by op-
timal projections can create instabilities for control algorithms (e.g., they allow points
along the axis of symmetry of a parabola to be projected to either side of the parabola).
Moreover, anNLPCNN with a circular node [8][9] at the feature layer can learn self-
intersecting curves and surfaces.

Kirby and Miranda [10] constrained the activation values of a pair of nodesp and
q in the feature layer of anNLPCNN to fall on the unit circle, thus acting as a single
angular variable:

r =
√

y2
p + y2

q , yp ← yp/r, yq ← yq/r

The delta values for backpropagation of the circular node-pair are calculated by the
chain rule [10], resulting in the update rule

δp ← (δpyq − δqyp)yq/r3, δq ← (δqyp − δpyq)yp/r3

at the feature layer.
The hyperbolic tangent and other antisymmetric functions (i.e.,ϕ(x) = −ϕ(x)) are

generally preferred to the logistic function as the sigmoid in part because they are com-
patible with standard optimizations [11].2 In addition, antisymmetric units can more
easily be replaced with linear or circular units in the feature layer, since these units can
produce negative activations. We propose using a slightly flatter antisymmetric func-
tion for the sigmoidal units with a similar response characteristic totanh (see Fig. 3).
The advantage of this node is that it can be converted to a circular node-pair while still
making use of its perviously learned weights.

2.2 The temporal constraint

Neither linear nor nonlinear principal components analysis represent the time, relative
time, or order in which data are collected.3 This information, when available, can be

1 The joint encoder dimensionality of limbs is independently reduced, then the arms and the legs
are paired and their dimensionality further reduced, and then finally the dimensionality of the
entire body.

2 These include mean cancellation, linear decorrelation using the K-L expansion, and covariance
equalization.

3 Although a temporal dimension could be added to an autoassociative network, one drawback
for online learning is that this dimension would need to be continuously rescaled as more data
is collected to keep it within the activation range of the nodes.
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Fig. 3.The popular hyperbolic tangent activation functiony ← 1.7159 tanh( 2
3
y) can be approx-

imated by a pair of circular nodes where the activation of the second nodeyq is fixed at
√

1.9443
and the activation of the first node is calculated accordinglyyp ← 1.7159yp/

√
y2

p + 1.9443.

used to reduce the number of layers and free parameters (i.e., weights) in the network
and thereby its risk of converging slowly or settling into a solution that is only locally
optimal. Since the activationsyp andyq of the circular node-pair in the feature layer
in effect represent a single free parameter, the angleθ, if θ is known, we can train the
encoding and decoding subnetworks separately by presentingk cos(θ) andk sin(θ) as
target output values for the encoding subnetwork and as input values for the decod-
ing network.4 Once a single period of data has been collected, temporal values can be
converted to angular valuesθ = 2π tk−t0

tn−t0
for data collected at any arbitrary timetk dur-

ing a period, starting att0 and ending attn. A network may similarly learn transitions
between periodic movements when using a linear or sigmoidal activation node in the
feature layer because these open-curve transitions do not restrict us to using nodes ca-
pable of forming a closed curve.5 NLPCNNs with a circular feature node remain useful
to identify the period of a motion pattern, especially when the pattern is irregular and,
thus, begins and ends at points that are somewhat far from each other.

3 Automatic segmentation

We conceived of the automatic segmentation problem as the problem of uniquely as-
signing data points to nonlinear principal component neural networks. It is possible to
partition the points without reference to the predictions of the networks.6 However, for

4 k ≈ 1.7 for zero-mean data with variance equal to 1 based on principles discussed in [11].
5 ytarget = 2k( tk−t0

tn−t0
− 1

2
), with k ≈ 1.4.

6 For example, data points may be partitioned at the point at which a trajectory most closely
doubles back on itself, if the distance between the two paths is within a certain threshold and
the paths then diverge beyond another threshold.



our method each network’s performance influences segmentation with more networks
assigned to regions that are difficult to learn.

A B

Fig. 4. The thick line shows the output of anNLPCNN and the thin line shows the underlying
distribution. The dots are data points.A. Before learning converges, allowing the network to learn
data points despite a high prediction error accelerates learning.B. However, after convergence, it
leads to segmentation errors.

As the robot begins to move, the first network is assigned some minimal number
of data points (e.g., joint-angle vectors), and its training begins with those points. This
gets the network’s learning started quickly and provides it with enough information
to determine the orientation and curvature of the trajectory. If the average prediction
error of the data points assigned to a network is below some threshold, the network is
assigned additional data points until that threshold has been reached. At that point, data
points will be assigned to another network, and a network will be created, if it does not
already exist. To avoid instabilities, only a single data point may shift its assignment
from one network to another after each training cycle.

j ← 1, bucket ← 1, E ← 0
∀xi {

train (networkj , xi)
Ei = ‖xi − g(f(xi))‖2, E ← E + Ei

if ( bucket > Bmax ∨
( learning? (networkj) ∧ E/bucket > Emax ) ∨
Ei > Ei+1 )
j ← j + 1, bucket ← 1, E ← 0 }

Listing 1: Pseudocode for segmentation.

Since a network is allowed to learn more data points as long as its average prediction
error per point is low enough, it may learn most data points well but exhibit slack near
peripheral or recently learned data points. At the start of learning, the network should
be challenged to learn data points even when its prediction error is large (see Fig. 4A).
As learning converges, however, the slack leads to segmentation errors (see Fig. 4B).



Therefore, we alter the method of segmentation once the network nears convergence
(as determined by Bayesian methods [12] or crossvalidation) so that a network may ac-
quire neighboring points if its prediction error for those points is lower that the network
currently assigned to those points.

4 Humanoid experiments

This section shows the result of automatic segmentation and neural network learning.
We assess the accuracy of the result based on a manual segmentation of the data points
and an analysis of how they are allocated among the networks.
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Fig. 5. Recognized motion patterns embedded in the dimensions of the first three nonlinear prin-
cipal components of the raw proprioceptive data. The top and bottom plots differ only in the
viewpoint used for visualization.

First, we recorded motion data while aHOAP-1 humanoid robot played soccer in
accordance with a hard-coded program [13]. Each data point is constituted by a 20-
dimensional vector of joint angles. A standard (noncircular)NLPCNN reduced the di-
mensionality of the data from 20 to 3, which was determined to be the intrinsic dimen-



sionality of the data by theISOMAP procedure [14] We then applied our algorithm to
segment, generalize, and generate humanoid motion.

Our algorithm uniquely assigned the data points among a number of circularly-
constrainedNLPCNNs. Each of the networks learned a periodic motion pattern by con-
jugate gradients. Our algorithm successfully generalized five out of six primary motion
patterns: walking forward, turning right or left, and side-stepping to the right or left.
It failed to generalize as a single periodic trajectory the kicking motion, which has a
highly irregular, self-intersecting shape. However, human subjects were also unable to
determine the kicking trajectory from the data points.

Figure 5 shows that the automatic segmentation algorithm successfully employed
circular NLPCNNs to separate and generalize five of the periodic motions. (The open-
curve segmentation of transitions between periodic motions are omitted for clarity.)
The periodic trajectories were generated by varying from0 to 2π the angular parameter
θi at the bottleneck layer of each of the circularly-constrained networks and mapping
the result to the output layer for display. This demonstrates our method’s capacity to
generate periodic motions.
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Fig. 6.The average distance between the prediction of a network trained on manually segmented
data and each of the automatically generated networks.

We calculated statistics based on running the automatic segmentation for 20 trails.
The algorithm resulted in five decoding subnetworks for 45% of the trials, which is the
most parsimonious solution. It resulted in six subnetworks for 50% of the trials, and
seven for the remaining 5%. In results published elsewhere [15, 16], we developed a
method resembling linear integration that consistently eliminated redundant networks



for this data set. If the area between the predicted curves of two networks is sufficiently
small, on network is removed and its data points are reassigned to the other network.7

Since the data was generated by the predefined behavior modules used by the Os-
aka University team in the 2003 RoboCup humanoid competition, each data point was
already labeled and could be segmented into the five types of motion that had been suc-
cessfully abstracted. To assess the accuracy of the automatic segmentation algorithm,
we manually assigned the data points corresponding to each type of motion to five peri-
odic temporally constrainedNLPCNNs. Figure 6 shows the average distance between the
prediction for each of these networks and each of the networks resulting from automatic
segmentation.
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Fig. 7. The allocation of data points to each network.

The lowest bar indicates which pattern the networks, numbered 1 to 6 best match in
terms of least average distance. Hence, the first network represents walking; the second
represents turning right; the third turning left; the fourth and fifth sidestepping right;
and the sixth sidestepping left. The fact that the fifth network is redundant, abstracting
the same type of motion as the fourth, does not prevent the abstracted actions from
supporting the mastery of soccer or some other task. Both networks can be used. The
algorithm’s capacity to reduce a vast amount of complex, raw data to just a few states
may help reinforcement learning approaches to finesse the curse of dimensionality [18].

We counted the number of point belonging to each network. Figure 7 shows that
the first network captured 92% of the walking data, the second 95% of the turning
right data, the third 89% of the data for turning left and 3.6% for turning right, the

7 The algorithms presented in [15] deviate from those presented here and in [17] in some minor
details, the most significant being that learning and segmentation occur sequentially rather
than simultaneously.



fourth captured 43% of the data for sidestepping right, and the fifth 84% of the data for
sidestepping left. The total number of point from each pattern allocated to the networks
is not 100% because the segmentation algorithm successfully excluded most outliers.

5 Conclusion

Our proposed algorithm abstracted five out of six types of humanoid motion through
a process that combines learning and data point assignment among multiple neural
networks. The networks perform periodic, temporally-constrained nonlinear principal
component analysis. The decoding subnetworks generate motion patterns that accu-
rately correspond to the five motions without including outliers caused by nondetermin-
istic perturbations in the data. During 45% of training episodes, the algorithm generated
no redundant networks; a redundant network appeared in 50% of the training episodes,
and two appeared in 5% of them. The fourth and fifth networks represent the same type
of motion. Although they would symbolize a redundant state in the reinforcement learn-
ing paradigm, this does not prevent the learning of a complex task. In companion papers
[15, 16], we propose a method that successfully removes redundant networks according
to the proximity of their predictions. In future work, we will improve segmentation by
competitively reassigning temporally-adjacent data points to the network that predicts
the points with the least error.
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