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Abstract—Developing a humanoid robot that can learn to 
perform complex tasks by itself has become a major goal of 
robotics research. This paper proposes a new algorithm for 
the automatic segmentation of humanoid motion data. We 
use a simplified soccer game, RoboCup, as a prototype task. 
Motion data from a 20 degree-of-freedom humanoid soccer 
playing robot are reduced to their intrinsic dimensionality by 
nonlinear principal component analysis. The proposed 
algorithm operates in of two phases. The first phase 
automatically segments the motion data in the reduced 
sensorimotor space by incrementally generating nonlinear 
principal component analysis with a circular constraint 
networks and assigning data points based on their temporal 
order to these networks in a conquer-and-divide fashion. 
Then, the second phase of the algorithm removes repeated 
patterns based on the distance between redundant motion 
patterns in the reduced sensorimotor space. The networks 
abstracted five motion patterns without any prior 
information about the number or type of motion patterns. 
The learned networks can be used to recognize and generate 
humanoid actions. 
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I.  INTRODUCTION 
The aim of developing a humanoid robot is to have a 

robot that can work cooperatively with people. Recently, 
robotics researchers have succeeded in developing 
mechanical platforms for humanoid robots. These robots 
can walk and perform some simple tasks. However, such 
demonstrations are usually performed by conventional 
computer programs that are prepared under specific 
environmental conditions. The robot may not be able to 
perform properly, if the conditions change. Moreover, a 
humanoid robot must take account of too many conditions 
to perform versatile tasks, and a programmer cannot 
anticipate and prepare for all these conditions  [1]. One 
solution is to develop a robot that can learn to perform in a 
human environment by itself. 

Reinforcement learning  [2] provides a useful method of 
adapting to environmental change based on experience. 
The self-organized, modular, and hierarchical structure of 
multi-layered reinforcement learning  [3] extends 
reinforcement learning to more complicated learning 
problems. There are drawbacks to applying conventional 
reinforcement learning to a real robot: the requirement of a 

long learning period and a well-designed state-action space. 
By introducing a set of examples to a reinforcement 
learning system, the learning time can be shortened  [4]. A 
heuristic algorithm is applied to a sample set to generate a 
state-action space and learning modules automatically  [5]. 
The learning modules  [5] are also reusable for learning new 
complex behavior. The reinforcement learning method 
works well with a simple robot, such as a wheeled robot. 
However, for a humanoid robot that has a large number of 
actuators, existing reinforcement learning schemes cannot 
deal with its huge state-action space directly. One solution 
is to apply an abstract state-action space to the hierarchical 
multi-module reinforcement learning method  [5], instead of 
using a raw state-action space. 

We propose a new algorithm that segments humanoid 
motion data automatically. The segmentation results can be 
used as abstract states and abstract actions to facilitate the 
learning of complex tasks by the hierarchical multi-module 
reinforcement learning method  [5]. We used nonlinear 
principal component analysis (NLPCA)  [6] to reduce the 
highly dimensional space of humanoid motion data to a 
tractable three-dimensional feature space. Our algorithm 
then incrementally employs nonlinear principal component 
analysis with a circular constraint (CNLPCA) networks  [7] 
to learn and divide data into segments. A CNLPCA 
network tries to learn as many data point in temporal order 
as its learning capacity can accept. Once the learning 
capacity of a network is saturated, the network defines a 
segment and a new CNLPCA network is employed. The 
algorithm keeps exploiting CNLPCA networks in the 
temporal ordering of the data until the end of the data is 
reached. As a result, different data patterns are 
automatically divided into segments, which match the 
original patterns. Some redundant segments may exist in 
the result. Our algorithm also minimizes the number of 
redundant segments by merging segments that are very 
close to each other based on the distance between the 
segments. In the final results, all the periodic motion 
patterns are characterized by automatically segmented 
trajectories. 

II. RELATED WORKS 
Linear PCA is a common method of dimensionality 

reduction. However, linear PCA has a problem 
representing nonlinear humanoid motion data. Tatani and 



Nakamura  [8] were first to apply NLPCA to human and 
humanoid motion data, though for dimensionality 
reduction only. A number of imitation frameworks have 
been proposed. A nonlinear dynamical system  [9] was 
crafted to produce primitive behaviors. A framework that is 
based on human designed behaviors may lack of the 
essence of developing behaviors through embodiment  [10]. 
The mimesis theory  [11] proposed action acquisition and 
action symbol generation while considering the 
embodiment concept. However, action symbols in the 
mimesis theory are not automatically extracted from the 
sequence of motion data. A very similar framework to the 
work here, which uses dimensionality reduction and 
segmentation of motion data in the reduced sensorimotor 
data space  [12], also does not segment the motion data 
automatically. 

III. NONLINEAR PRINCIPAL COMPONENT ANALYSIS 
WITH A CIRCULAR CONSTRAINT 
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Figure 1.  Target values presented at the output layer of a nonlinear 
principal component neural network are identical to input values. 
Nonlinear units comprise the encoding and decoding layers, while either 
linear or nonlinear units comprise the feature and output layers. 

The human body has 244 degrees of freedom  [13] and a 
vast array of proprioceptors. Excluding the hands, a 
humanoid robot generally has at least 20 degrees of 
freedom and far more dimensions are required to describe 
its dynamics precisely. Fortunately, from the standpoint of 
a particular activity, the effective dimensionality may be 
much lower. 

Given a coding function and decoding 
function that belong to the sets of continuous 
nonlinear function  and  respectively 
where nonlinear principal component networks 
minimize the error function
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resulting in P  principal components [ ] ( )xfyy p =...1 in 
the feature layer. Kramer  [6] first solved this problem by 
training a multilayer perceptron as shown in Fig. 1 using 
backpropagation of error, although a second order method 
such as conjugate gradient analysis converges to a solution 
faster for many large data sets.  

NLPCA unlike PCA, which is a special case 
where C and are linear, does not have a unique solution 
and no known computational method is guaranteed to find 
any globally optimal solution. However, NLPCA can 
address the nonlinear nature of humanoid motion data 
better than PCA. Moreover, NLPCA also provides a 
reverse mapping and interpolation from the feature space 
back to the original data space of high dimensionality. 

D

Here, we use NLPCA for dimensionality reduction. The 
performance of NLPCA for dimensionality reduction is 
acceptable. From our preliminary investigation of the 
humanoid motion patterns in the feature space of NLPCA, 
most of the patterns are closed curves because of their 
periodic nature. Conventional NLPCA has a problem with 
learning a closed or self-intersecting curve  [14], while 
nonlinear principle component analysis with a circular 
constraint at the feature layer (CNLPCA) can overcome 
this difficulty  [7]. To represent these closed curves, we 
instead use CNLPCA to learn the periodic motion patterns 
in the feature space.  

Kirby and Miranda  [7] constrained the activation values 
of a pair of nodes and in the feature layer of an NLPCA 
network to fall on the unit circle:  
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Figure 2.  The NLPCA with a circular constrain at the bottleneck.  



While and are the input activation, 0p 0q p and are the 
output of nodes and , respectively. Thus, the pair of 
nodes p and acting as a single angular variable

q
p q

q θ . 

IV. AUTOMATIC SEGMENTATION  ALGORITHM 
We conceived of the automatic segmentation problem 

as the problem of uniquely assigning a temporal sequence 
of data points in the feature space to CNLPCA networks. 
As the robot begins to move, the first network is assigned 
some minimal number of data points, and its training starts 
with these points. This gets the network learning started 
quickly and provides it with sufficient information to 
determine the orientation and curvature of the trajectory. A 
network accepts points based on its prediction. Once points 
from a different pattern are assigned to the learning 
network, its prediction error rapidly increases, and a new 
network will be deployed and start learning. The automatic 
segmentation algorithm works as follows: 

LIST I.  PSEUDOCODE FOR AUTOMATIC SEGMENTATION 

1. Initialize a CNLPCA network.  
2. Assign n data points in temporal order to the 

CNLPCA network. 
3. Let the network learn the assigned data points. 
4. If ( ) oldnew MSEMSE ×+< α1  goto step 2. 
5. End learning of this segment. 
6. Goto step 1, if this is not the end of the data set.

 

As stated in List 1, the automatic segmentation begins 
to work by creating a new CNLPCA network. Then, a 
number of data points n in the data sequence are selected 
and assigned to the CNLPCA network that was created in 
the previous step. The number of data points is not a 
critical free-parameter of our algorithm, n could be any 
positive integer number starting from 1. In the other word, 
the parameter is the size of the new data set that is added 
to the network to learn a pattern at each iteration of the 
algorithm. Thus, if we increase , the iteration step in List 
1 will be decreased. However, we should not use a large 
value for . Because, if the value of is close to the total 
number of data points in a segment, that means the 
segmentation is biased by the parameter . After data 
points have been assigned to the network, the network 
training begins. In this work, the terminal criterion of 
network learning is the number of epochs. The variables 

and in step 4, are the mean square error 
values of the learning network at the current step and the 
previous step, respectively. Step 4 is the most important 
step of the automatic segmentation algorithm, because the 
decision to continue learning on the same segment or to 
begin a new segment is made at this step. The decision to 
continue learning by using the same network is made by 
comparing the value of mean square error of the network 
before and after the network is assigned to learn the n data 
points. A free parameter

n

n

n

n n

n n

newMSE oldMSE

α is used in the comparison. The 
parameterα is a small positive real number that is less than 
1. We can interpret the meaning of the parameterα as the 
factor that indicates the allowance of increasing of the 

mean square error value of the learning network when a 
new set of n data points are assigned to it. The comparison 
condition of the if-statement in step 4 of List 1 that allows 
increasing of the mean square error value, does not lead to 
a large value of the mean square error at the end of 
segment learning, because the mean square error value will 
be decreased again on the next iteration of the learning of 
the network. If the mean square error value can not be 
decreased and its value exceeds the allowance condition, 
the latest data points will be rejected from the learning 
segment and a new segment will begin to learn the n data 
points. The algorithm keeps deploying CNLPCA networks 
and assigning data points to them until the end of the data 
is reach.  

n

n

Since the algorithm segments different data patterns in 
accordance with the temporal constraint of the data set, if 
there are repeated motion patterns, for example, if the robot 
walked forward, turned right and then walked forward 
again, there will be two segments that represent the 
walking forward pattern with their corresponding networks. 
One of these two segments may be considered redundant. 
We want to obtain only one network for each abstract 
motion pattern. Thus, the redundant networks should be 
removed or at least minimized. The minimization of 
networks redundancy is performed by the following steps: 

LIST II.  PSEUDOCODE FOR MINIMIZATION OF NETWORKS 
REDUNDANCY 

1. For ni ,...,1= , where is the total number of 
segments. 

n

2. For each segment , calculatei 2
1

avg
j d

D =  to 

segment , where  is the average distance 
between the two segments. 

i avgd

3. For all , if  exceeds a threshold, merge and 

relearn the segments that  refers to. 
jD jD

jD
 

 

To obtain a value of the average distance between 
segment and segment , one may calculate output of 
network and network by running the angular parameter 
at the bottleneck layer of network from 0 to 2π, then uses 
the output of network a as the input data to network b , the 
average value between input-output pairs of the 
network is . The inverse of the square of average 
distance  is used for a clear discrimination between 
segments that are close or far from the reference segment. 

avgd

a b
a b

b avgd

jD

V. EXPERIMENTAL RESULTS AND DISCUSSION 
This section shows the result of automatic segmentation. 

We assess the accuracy of the result based on a manual 
segmentation of the data and an analysis of how data points 
are allocated among the networks. The segmentation 
results before and after applying minimization of networks 
redundancy are also shown here. 



 
Figure 3.  The Fujitsu HOAP-1 robots are playing a simplified soccer 
game: RoboCup.  
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Figure 4.  Recognized motion patterns embedded in the dimension of 
the first three nonlinear principal components of the raw proprioceptive 
data. 
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Figure 5.  The average distance between manually segmented networks 
and automatically segmented networks before eliminating redundant 
networks. 
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Figure 6.  The average distance between manually segmented networks 
and automatically segmented networks after eliminating redundant 
networks. 

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
er

ce
nt

 o
f d

at
a-

po
in

t

 

Figure 7.  The allocation of data points to each network before applying 
network redundancy minimization. 
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Figure 8.  The allocation of data points to each network after applying 
network redundancy minimization. 



We recorded motion data while a Fujitsu HOAP-1 
humanoid robot was manually controlled by a human 
operator to play soccer as shown in Fig. 3. The motion 
sequences are walking forward, turning right, turning left, 
walking forward, sidestepping right, sidestepping left, and 
kicking. Each data point is constituted by a 20-dimension 
vector of joint angles. A standard (noncircular constraint) 
NLPCA network reduced the dimensionality of the data 
from 20 to 3. 

As explained in the previous section, our algorithm 
consists of two phases: automatic segmentation of motion 
data in the data sequence and minimization of networks 
redundancy based on average spatial distance between 
segments in the reduced sensorimotor space. We have 
obtained eight segments of motion data patterns after we 
performed the automatic segmentation based on the 
temporal order of the data. An accuracy analysis of the 
segmentation results based on a manual segmentation 
which is the average distances between manually 
segmented trajectories and automatically segmented 
trajectories is shown in Fig. 5. A data points allocation 
analysis, which indicates the performance of the algorithm 
at categorizing different patterns of motion data into 
different segments in the data sequence is shown in Fig. 7. 
After the automatic segmentation routine has been 
performed, the routine for minimizing redundant networks 
searches for segments those positions are very close to each 
other and merges them.  Fig. 4 shows that the complete 
automatic segmentation routine successfully employed 
CNLPCA networks to separate and generalize five of the 
periodic motions without any prior information about the 
number or type of motion patterns. 

Fig. 5 and 6 are analyses of average distances from 
each automatically segmented pattern to every manually 
segmented pattern before and after applying the routine 
that minimizes redundant segments. There are eight 
segments in the automatic segmentation results before 
applying the minimization of networks redundancy 
algorithm as shown in Fig. 5. The lowest bar indicates 
which known pattern matches the automatically segmented 
pattern. We notice from Fig. 5 that segment No. 1, 5 and 8 
match the walking pattern. The redundancy among these 
segments occurred because the robot performed this action 
three times during different time intervals when we 
recorded the data. Thus, this is a correct result of the 
segmentation algorithm based on the temporal ordering. 
Segment No. 2 and 3 in Fig. 5, are also redundant. Both 
represent the turning right action. This is an inaccurate 
result, because the robot performed the turning right action 
only once during the recording of data. There should be 
only one network to represent each motion pattern. The 
allowance factor of increasing of the mean square error 
value of the learning network parameter α , influences 
these results. The smaller value ofα  we use, the more 
segments we get. Even a motion pattern could be broken 
into several segments at this state, but segments that 
represent the same motion pattern will be merged later by 
the minimization of networks redundancy routine.  

An underlying fact that allows the minimization of 
networks redundancy routine to search and merge 

redundant and broken segments that represent the same 
motion pattern is the segments that represent the same 
motion pattern have the same shape of curve and they lie 
near each other in the reduced sensorimotor space. All of 
the redundant networks were removed and their data points 
were reallocated. Fig. 7 and 8 are an analysis of the 
allocation of data points before and after applying the 
minimization of networks redundancy algorithm, 
respectively. Each bar represents the percentage of data 
points that belong to each known pattern in an 
automatically segmented trajectory. This value is the ratio 
of the number of data point of each of pattern in a segment 
to the total number of data points of each pattern in the 
entire data set. We observe a very low rate of data point 
misallocation in Fig. 7. The allocation of data points after 
the removal of the redundant networks is also accurate. We 
can observe from Fig. 7 that segment No. 5 and 8, which 
are redundant with respect to segment No. 1, were merged 
into segment No. 1 in Fig. 8. Segment No. 3 which is 
redundant with segment No. 2, was also merged into 
segment No. 2 in Fig 8. 

However, our algorithm could not capture the kicking 
pattern. This is because it appears to be a very irregular 
discontinuous curve in the feature space. We plan to fix 
this problem by using a more powerful functional 
approximation algorithm. 

VI. CONCLUSION 
We proposed an automatic segmentation algorithm for 

humanoid motion data. The algorithm is designed for 
working with motion data that was recorded from a real 
humanoid task. The algorithm abstracted five out of six 
types of humanoid motion without any prior information 
about the number or type of motion patterns.  

Our algorithm has two phases. The first phase is a 
temporal ordering segmentation process that combines 
learning and temporally-constrained data point assignment 
among multiple neural networks. The second phase is a 
process of minimizing redundant networks that merges 
redundant networks based on the average spatial distance 
between the sensorimotor trajectories they generate. Our 
algorithm can perform well for periodic humanoid motion 
patterns. The learned networks can be used for recognition 
and generation of humanoid actions in order to learn and 
perform a complex task as in  [5].  

These results can facilitate the learning of human’s 
complex tasks by deriving an abstract state-action space for 
reinforcement learning. However, we have not included a 
robot’s dynamic information in this work. Thus, instability 
dynamics could result, if the demonstrator and the learner 
have significant differences in their dynamics. We plan to 
include the robot’s dynamic information in our future work. 
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