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Abstract

Joint attention, a process to attend to the object that
the other attends to is supposed to be important for
human–robot communication as well as for human–
human communication. We propose an architecture
for acquiring joint attention within a certain time
period for realizing natural human–robot interaction.
The architecture has two featured modules: a self-
organizing map that makes the leaning time shorter
and an automatic visual attention selector that let the
agent communicate with a human asynchronously.
We implemented the proposed architecture in a real
robot agent and found that 30 minutes was enough for
acquiring joint attention with two objects. We can
conclude from preliminary experiments that even if
the gaze preference of the robot is different from that
of the human caregiver, it can acquire joint attention.

1 Introduction

Recently, tasks required for a robot become difficult
and complicated, and it is nearly impossible to pro-
gram overall procedures by hand. Communicating
with the robot through interaction will be one of
solutions to avoid such a catastrophe. It may en-
able us to program the robot intuitively. Another
fact to support the importance of communication
is that non-robot-experts even use robot platforms
since robot agents are now going out of the labora-
tories and factories. If the communication is properly
designed, non-experts can use such robots in a nat-
ural way without having special knowledge on pro-
gramming the robots.

In the human–human communication, the ability to
attend to an object which someone else is attending
to is important. Such process is called joint attention
[1] and is supposed to be a basic element for other so-
cial cognitive functions such as language communica-
tion and mind reading [2, 3, 4]. In the human–robot
communication, the robot’s ability of joint attention

is often explicitly pre-programmed by the designer
[5, 6, 7, 8]. However, it is not argued how the robot
can acquire such an ability of joint attention through
interactions with its environment. Such an acquisi-
tion process through interaction between the agent
and a human caregiver is recently studied intensively
[9, 10, 11].

If we study on a learning agent interacting with a
human, the learning time should be within a certain
time period. Long learning time makes the attending
strategy of the human, such as the preference change
to saliencies and the frequency of gaze change, dif-
ferent from that in human–human interaction. In
other words, the required learning time should be al-
most the same as that of a human since he/she also
changes the behavior by observing the robot behav-
ior. Therefore, we should study on the learning ar-
chitecture that enables real-time learning. However,
the importance of real-time communication between
a human and a robot is not so far pointed out clearly
in the context of joint attention to the best of the au-
thors’ knowledge.

In this paper, emphasizing on the importance of real-
time interaction between a robot and a human care-
giver, we propose an architecture for a robot to ac-
quire the joint attention behavior within a reasonable
period of time. One idea to realize such an archi-
tecture is to use a self-organizing map to compress
the high-dimensional image into certain size, which
makes the leaning time shorter. The other is to use
automatic visual attention selector, which let the
agent communicate with a human asynchronously.
We implemented the proposed architecture in a real
robot agent and found that 30 minutes was enough
for acquiring joint attention with two objects. We
can conclude from preliminary experiments that even
if the gaze preference of the robot is different from
that of the human caregiver, it can acquire joint at-
tention.
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Figure 1: Joint attention between a robot and a
human caregiver: The robot observes the caregiver’s
face, and calculates head movement ∆θt and ∆θp so
as to attend to the object that the caregiver attends
to.

2 Joint attention between a human care-
giver and a robot

2.1 The joint attention behavior of the robot

The joint attention behavior of the robot with a hu-
man caregiver is shown in Figure 1. The robot ob-
serves the caregiver’s face, and moves its head (∆θt

and ∆θp to the tilt and pan directions, respectively)
to see the object that the caregiver is attending to.
The robot acquires the relation between a face pat-
tern of the caregiver and joint displacements to re-
alize such a joint attention behavior through its ex-
perience. If there is only one object to be attended
in the environment, the robot should only learn the
relation between the face pattern and the movement
generated by visual feedback to attend to the object.
However, since there are several salient objects in
the environment, the robot has to select one object
to attend to.

2.2 Attending strategy of the human care-
giver

The real environment has many objects that provide
salient image features to the agents. Therefore, the
attentional mechanism, how to select an object to
attend to, should be a key to acquire the joint at-
tention behavior. If the attention mechanisms of a
human and of a robot are completely different, the
behavior cannot be acquired. If the mechanisms are
the same, the acquisition is easy. Then, the problem
is to what extent the mechanisms share common el-
ements.

Imagine the learning process of joint attention. If
the communication is one way, that is, the caregiver
looks what he/she wants to see while the robot learns
the joint attention, the behavior of the robot does
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Figure 2: An architecture for emergence of joint at-
tention through natural interaction: A saliency filer
extracts saliencies from the captured images. A at-
tention selector will select one of saliencies and feeds
its coordinates to the visual feedback controller. At
the beginning of learning, the gate uses visual feed-
back. Meanwhile, the face pattern of the human care-
giver is categorized by the self-organizing map. When
the robot success to see the salient object in the center
of the view, it will strengthen the connection between
the face pattern and joint displacements. Over time,
the gate gradually use the output of the learning mod-
ule more than the visual feedback controller.

not change caregiver’s attending strategy such as the
preference change to saliencies and the frequency of
gaze change. However, real communication is bi-
lateral, that is, the caregiver sees the behavior of the
robot and changes the strategy. The caregiver may
be able to gradually change the attention strategy by
observing the robot’ behavior, and as a result, even if
the shared common parts are small at the beginning
of learning, eventually the joint attention behavior
can be learned. In this sense, we cannot separate
the learning of the agent from caregiver’s strategy
change.

3 Learning Architecture for Human–
Robot Natural Communication

We propose an architecture for learning natural
human–robot joint attention. Overall architec-
ture shown in Figure 2 has three features: (1)
an autonomous attention selector that enables au-
tonomous attention selection, (2) a self-organizing
map to compress the high-dimensional face image
into certain size, which makes learning time within a
certain time period, and (3) a contingency learning
module [11].

3.1 A learning process

The robot is programmed to gaze first at the care-
giver’s face, then at a salient object. Infants are sup-
posed to have innate preference to the human faces



[12], and therefore, it may be natural to assume that
the face is one of the most salient objects.

At the beginning of learning, the gate selects the
output of visual feedback as the input to the robot.
The robot will move its head, therefore, to gaze at
the object that the module selects. When it succeeds
to see the salient object in the center of the view, it
will strengthen the connection between the face pat-
tern and the joint displacements. Over time, the
gate gradually use the output of the learning module
more than the visual feedback. Note that the robot
does not need any information whether joint atten-
tion successes or not, that is, the selected attention
is not necessarily the same as that of the caregiver.

3.2 An automatic attention selector

In the previous work on acquiring human–robot joint
attention, synchronization was pre-programmed [9,
11]. In the real communication, however, syn-
chronization may not be pre-programmed but may
emerge through interaction. Not only the robot but
also the caregiver changes the behavior by seeing
robot’s behavior. Moreover, we do not know yet in
what kind of preference to image features the robot
should have to emerge the joint attention behavior.
To study such resonance between the robot and the
caregiver, the robot should autonomously change the
gaze direction and see a different object according to
its own interest measure changing from time to time.

A human, typically an infant, has a habituation abil-
ity, that is, he/she has a preference to a new and
novel stimulus and to lose the interest when he/she
attends to the same stimulus for a while. By losing
the interest, a human changes the gaze direction. Ac-
cording to this observation, we propose an automatic
attention selector to provide interest measure of each
object that gradually decreases when the robot con-
tinues to see it. Note that this measure provides not
only temporal change of the gaze, but also the pref-
erence change.

Typical image features such as color, edge, and mo-
tion are candidates to be attended to. Let n be the
number of candidates in the robot’s camera image
and Si(t), (i = 1, · · · , n) be the saliency of the i-th
object, respectively. We set an initial value of the
interest measure Ii(t) as

Ii(0) = Si(0)Ci, (1)

where Ci is a weighting constant between different
kinds of saliency, that is, a preference for the saliency.
While the robot continues to gaze at the k-th object,
the interest measure will decrease:

Ik(t + 1) = γkIk(t), (2)

where 0 < γk < 1 is a decay factor of the object
k. The probability Pi to attend to the i-th object is

calculated according to the interest measure,

Pi(t) =
Ii(t)∑n

j=1 Ij(t)
. (3)

We can use more complicated functions such as soft-
max instead. On every time step, the robot will se-
lect an object k to attend to according to the proba-
bility (3). Over time, the robot will lose the interest
measure according to the eq.(2), and eventually, it
changes the object to attend to. We adopt visual
feedback control for the robot to change the direc-
tion of gaze by moving pan and tilt angles.

3.3 A self-organizing map for categorizing
face patterns

It is relatively hard to extract features concerning to
the direction of the face since the face pattern has so
much information. Therefore, if the face pattern is
fed to the learning mechanism directly, the learning
time will be large [9, 11].

We adopt a self-organizing map to compress the
high-dimensional face image into a certain dimen-
sion, which makes the leaning time shorter. Be-
fore learning the contingency between the face pat-
tern and the gaze direction, the robot sees the care-
giver’s face and categorizes its patterns by the self-
organizing map.

3.4 A contingency learning module

The robot learns the contingency between the face
pattern and the joint displacements [11]. We can use
any simple learning network that can code one-to-
one mapping such as a Hebbian network or a forward
neural network for contingency learning.

4 Experiments

We realized the proposed architecture on a real robot
agent and study on the learning performance of
the joint attention behavior with different attending
strategies. Here, several preliminary experimental
results are shown.

4.1 An environmental setup

In Figure 3, we show an environmental setup for ex-
periments. The robot and the human caregiver are
sharing the same task space, a table in this exam-
ple, where several objects are existing. The care-
giver attends to objects by himself, and the robot will
learn the contingency asynchronously. The caregiver
changes the object positions randomly and asyn-
chronously from time to time.

4.2 Self-organizing map for recognizing the
face

A learned self-organizing map is shown in Figure 4.
The size of self-organizing map is 9×9, each of which
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Figure 3: An environmental setup for experiments:
The robot and the human caregiver are seeing at ob-
jects on the table. The caregiver changes the object
positions randomly and asynchronously from time to
time.

consists of 32 × 32 gray scale. This map can be
learned within 3 [min].

In the previous work [11] in which they used 3-layer
forward network, results of 125 trials are repeatedly
fed to the network 5×105 times to learn the behavior,
that is, each data is used 4000 times. By introducing
the self-organizing map, we can adopt a 2-layer for-
ward network instead and the learning time drasti-
cally decrease to several hundred trials without using
data repeatedly. It needs 6 hours for 500 trials.

4.3 Attention selection between two objects

By introducing the automatic attention selector, we
could reduce the learning time to 30 minutes for 500
learning epochs since the caregiver did not have to
synchronize to the motion of the robot.

In Figure 5, we show how the robot changes its in-
terest measure by the module. In this case, there
are only two object in the environment. By image
processing, intensity of each is obtained and used as
saliency. Horizontal axis represents the frame num-
ber whose rate is 15 [Hz]. The module selects the
attention every 20 frames, that is, every 1.32 [s].

When the object A was attended, the interest mea-
sure of A decreased while that of B did not change,
and vise versa. At approx. the 700-th frame, we
reset the measure of B since it became less than a
given threshold (ε = 40). It is the same reason for
the sudden jump of the measure of A at approx. the
850-th frame.

By using this strategy, every object that provides
more intensity than 40 can be attended, and over
time, the interest measures for all objects become
almost the same. Although it is controversial how to

Figure 4: An acquired self-organizing map: The size
of self-organizing map is 9×9, each of which consists
of a 32 × 32 gray scale bitmap. This map can be
learned within 3 [min].

find appropriate strategy, the contingency learning
module can make the robot learn the joint attention
even with such a simple strategy.

4.4 Experiment 1: Changing attention selec-
tion speed

We changed the speed of attention selection both of
the human and of the robot, and investigated the
performance of learning. In Figure 6, we show mov-
ing average of success rate of joint attention in the
last 50 trials, case 1: the caregiver slowly changes
the attention trying to synchronize to the behavior
of the robot, case 2: the attention selection speed of
robot is faster than that of the caregiver, case 3: the
attention selection speed of caregiver is faster than
that of the robot, and case 4: the robot and the care-
giver change the attention fast and asynchronously.
In these experiments, there are only two objects in
their view.

Note that the success rate at the 500-th step and that
at the 50-th step mean different performances, that
of the learning mechanism and that of the probabilis-
tic gaze of the attention selector, respectively. We
can see that synchrony let the robot increase the suc-
cess rate from the chance level to almost 80% (case
1). Also in other cases, the robot still could acquire
joint attention, which proves the inference that the
contingency learning module can handle such asyn-
chrony. It is astonishing that the proposed architec-
ture can acquire joint attention even if the caregiver
sometimes changes the gaze direction asynchronously
while the robot gaze at the caregiver’s face and at the
object (case 4).
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Figure 5: Change of interest measures of object A
and B: When the object A was attended, the inter-
est measure of A decreased while that of B did not
change, and vise versa. At approx. the 700-th frame,
we reset the measure of B since it became less than
a given threshold (ε = 40). It is the same reason for
the sudden jump of the measure of A at approx. the
850-th frame.
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Figure 6: Moving average (50 trials) of success
rate changing the gaze: case 1: the caregiver slowly
changes the attention trying to synchronize to the be-
havior of the robot, case 2: the attention selection
speed of robot is faster than that of the caregiver,
case 3: the attention selection speed of caregiver is
faster than that of the robot, and case 4: the robot
and the caregiver change the attention fast and asyn-
chronously.

4.5 Experiment 2: Changing preferences

Next, we investigated what does the difference of
preference bring to the performance of the behav-
ior. In this experiment, there are two objects, one is
red and the other is yellow. Two cases are tested
on the robot: (1) The robot has a preference to
red whereas the caregiver has the same preference
(see Figure 7) and (2) It has a preference to yel-
low whereas the caregiver has a preference to red
(see Figure 8). The preference is realized by setting
Ired(0) = 1000, Iyellow(0) = 3000, γred = 0.01, and
γyellow = 0.03, respectively.

If the robot has the same preference with a caregiver,
the success rate is relatively high from the beginning.
However, even if the robot has a different preference,
it can acquire the behavior. The robot even gaze
at red since the probability to attend to red is not
completely zero.

In the figures, we show two cases with and with-
out decreasing the interesting measure according to
eq.(3). We could not find any significant difference
between them, which means that the contingency
learning mechanism can handle both cases. However,
it may depend on designing the gating function. If
the gating is different, it is expected that the perfor-
mances with and without the decay factor will differ.
We have to continue to study on this matter.

5 Discussion

If we want to study the time development of the com-
munication, the interaction dynamics consisting of
dynamics of the caregiver (e.g. attending strategy),
of the robot, and of the environment must be appro-
priately designed. The architecture was designed to
realize such interaction dynamics by introducing an
automatic attention selector, a self-organizing map,
and a contingency learning module. To study further
on the communication, we also have to measure the
behavior of the caregiver, and to estimate his/her
strategy to understand overall interaction dynamics.
As for the dynamics of the environment, we can in-
fer that as far as the environment is supposed to be
quasi-static for the agents, that is, the objects do not
move while the agents change the gaze, the proposed
architecture can acquire joint attention.

The experimental results are still preliminary: we
should do more experiments on more subjects to in-
vestigate in what kind of preference to image features
the robot should have to emerge the joint attention
behavior. The merit of taking such a constructivist
approach is that we can estimate the validity of the
attention mechanism in the context of learning joint
attention, whereas it takes great pains to guess ap-
propriate performance index to validate the mecha-
nism itself.
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Figure 7: Moving average (50 trials) of success rate
(case 1: the same preference): Both the robot and the
caregiver have the same preference to red.

It is also an interesting issue to study on the reso-
nance between the robot and the caregiver. In this
paper, the caregiver tried not to change the strategy
while the robot autonomously change the gaze direc-
tion and see a different object according to its own
interest measure. However, it must be interesting to
study on the dynamical change of caregiver’s strat-
egy over time and on emergence of the synchrony.

We found that the short learning time is not only ef-
fective for preserving the caregiver’s real-time change
of dynamics, but also for statistical analysis. That is,
if the leaning time is short, we can test several learn-
ing trials on several subjects easily, and as a result,
we can process the results in a statistic way, which
is necessary to analyze the communication between
agents.
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