Visuo-motor Learning for Behavior Generation of
Humanoids

Masaaki Kikuchi!, Masaki Ogino' and Minoru Asada'-?
!Dept. of Adaptive Machine Systems,
2HANDALI Frontier Research Center,
Graduate School of Engineering, Osaka University,
Osaka, Japan
Email: {kikuchi, ogino} @er.ams.eng.osaka-u.ac.jp,
asada@ams.eng.osaka-u.ac.jp

Abstract— This paper proposes a method of bahavior gen-
eration for humanoids in which a robot learns sensorimotor
maps in each motion primitive as the forward and inverse
relationship between optic flow in the robot’s view and motion
parameters. Robots use these maps to decide appropliate
motion parameters that generate a desired flow given by a
planner. Robots have encapsulated modules each of which
consists of a planner and maps of primitives. Each module
can accomplish a simple task, and using multiple modules as
the situation demands, robots can accomplish complex task.
Passing a ball (face-to-face pass) between two humanoids
which have different camera lens and body parameters is
realized as an example task.

I. INTRODUCTION

Recognizing the causal relationship between a motion
and sensor change is inevitable for a robot to move in
the world or recognize an object. Because a robot knows
the results of its motion by the changes of its own sensor
values, mapping between motor commands and corre-
sponding sensor values (sensorimotor mapping) is crucial.
Visual information is one of the most important sensors
to know the outside world. The methods for mapping
between visual information and motion commands are
classified broadly into two categories. One is a top-down
approach in which a designer constructs vision and motion
system separately and gives mapping between them. In
this approach, each system is calibrated to the global axis
[4] [5]. Such a method does not consider changes of an
environment or an embodiment of the robot. Therefore,
if the environment or the embodiment is changed, the
designer need to give another sensorimotor mapping or
coordinate conversion model. Furthermore, it is difficult for
designer to give a sensorimotor mapping which is complex
causal relationship as interaction with an object in advance.

On the other hand, the other approach does not calibrate
each system separately, but directly correlate visual infor-
mation and motor commands. In this approach, optic flow
has been used for mapping, because optic flow caused by
the motion contains the information of causal relationship
between the environmental change and the motion. The
mapping between optic flow and motion commands are
learned for obstacle avoidance planned by the learned
forward model [2] or finding obstacles that show different
flows from the environments using reinforcement learning

[3] in wheel type robot. Also, it is used for object recog-
nition by active touching in humanoid fixed in the ground
[1]. In these studies, the robots have much fewer DoFs
than humanoids, therefore it seems difficult to apply their
methods to realize various kinds of humanoid behaviors.
One solution is to decompose a humanoid action into basic
motion primitives and to acquire the sensorimotor mapping
in each motion primitive. This makes it possible for a
robot to learn the sensorimotor mapping on line because in
each motion primitive the relationship between the motion
parameters and the sensor values is usually much simpler
than in the general motion.

In this paper, as an example task, passing a ball between
two humanoids (face-to-face pass) is realized based on
the sensorimotor mappings of motion primitives. The task
is decomposed into three basic motion modules: trapping
a ball, approaching to a ball and kicking a ball to the
opponent. Each motion module can be further decomposed
into several motion primitives, each of which has motion
parameters to control the motion trajectory. The senso-
rimotor mapping is learned as the forward and inverse
relationship between these motion parameters and optic
flow information in each motion. The acquired sensori-
motor maps are used to select the appropriate motion
primitive and its parameters to realize the desired pathway
or destination in the robot’s view given by the planner.

The rest of the paper is organized as follows. Section
II introduces an overview of our proposed system. Section
IIT provides the details of each module for “passin a ball”
task. Section IV shows the experimental result of the task
to use integrated modules. Finally conclusion remarks are
given.

II. TASK, ROBOT, AND ENVIRONMENT
A. Robot platforms

Fig. 1 shows biped robots used in the experiments,
HOAP-1, HOAP-2, and their on-board views. HOAP-1 is
480 [mm] in height and about 6 [kg] in weight. It has a
one-link torso, two four-link arms, and two six-link legs.
The other robot, HOAP-2, is a successor of HOAP-1. It
is 510 [mm] in height and about 7 [kg] in weight. It has
two more joints in neck and one more joint at waist. Both
robots have four force sensing registors (FSRs) in their



foots to detect reaction force from the floor and a CCD
camera with a fish-eye lens or semi-fish-eye lens.

Fig. 1. HOAP-1 with fish-eye lens and HOAP-2 with semi-fish-eye lens

These robots detect objects in the environments by
colors. In this experiment, a ball is colored orange, and
the knees of the opponent robot are colored yellow. The
centers of these colored regions in the images are recorded
as the detected position.

B. Visuo-motor learning

Let the motion flow vector Ar at the position 7 in
the robot’s view when a robot takes a motion, a. The
relationships between them can be written,

Ar = f(r,a), (1)
a = g(r,Ar). )

The latter is useful to determine the motion parameters
after planning the motion path way in the image. However,
it is difficult to determine one motion to realize a certain
motion flow because different motion primitives can pro-
duce the same image flow by adjusting motion parameters.
So, we separate the description of the relationship between
the motion parameters in each primitive and the image flow
as follows.

%

a' = (pi,....ph)" =gi(r,Ar) 3)
Ar = fi('r‘,ai), 4

a' are the motion parameter vector of the i-th motion prim-
itive. We use neural networks to learn these relationships.

C. Task and Assumptions

”Face-to-face pass” can be decomposed into following
three modules:

« approaching to a ball to kick,

« kicking a ball to the opponent, and

« trapping a ball which is coming to the player

All these basic modules need the appropriate relationship
between motion parameters and the environment changes.
For example, to trap a ball appropriately, the robots must
estimate the arrival time and position of the coming ball.
To approach to a kicking position, the robot should know
the causal relationship between the walking parameters and
the positional change of the objects in its image. Further,
to kick a ball to the opponent, the robot must know the
causal relationship between the kicking parameters and the
direction the kicked ball will go.

Moreover, basic modules to realize these behaviors
should be activated at the appropriate situations. Here,
the designer determines these situations to switch the
behaviors, and we focus on the module learning based on
optic flow information. Fig. 2 shows an overview of our
proposed system.
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Fig. 2. A system overview

III. MODULE LEARNING BASED ON OPTIC FLOW
INFORMATION

A. Ball Approaching

Approaching to a ball is the most difficult task among
the three modules because this task involves several motion
primitives each of which has parameters to be determined.
These motions yields various types of image flows de-
pending on the values of the parameters which change
continuously. We make use of environmental image flow
pattern during various motions to approach to the ball.

We separate the description of the relationship between
the motion and the image flow into the relationship between
the motion primitive and the image flow, and the relation-
ship between the motion parameters in each primitive and
the image flow (Fig. 3), as follows.

m; = gm(r,Ar), 5)
a' = (p},ph)" =g.(r,Ar) (6)
Ar = f(r,a’), ©)

where m; is the index of the i-th motion primitive and
a’ = (pi,ph)T are the motion parameter vector of the i-
th motion primitive. In this study, the motion primitives
related to this module consists of 6 primitives; forward
walk (left and right), curve walk (left and right), and
side step (left and right). Each of the primitives has two
parameters which have real values, as shown in Fig. 4.
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Fig. 5. An example of an optic flow in the robot’s view

Fig. 3. An overview of the approaching module

Given the desired motion pathway in the robot’s view,
we can select appropriate primitive by g,,, and determine
the motion parameters of the selected motion primitive by
g; based on the learned relationships among the primitives,
their parameters, and flows. If the desired image flow yields
several motion primitives, the preferred motion primitive is
determined by value function.
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Fig. 4. Motion primitives and parameters for approaching

Images are recorded every step and the image flow is
calculated by block matching between the current image
and the previous one. The templates for calculating flows
are 24 blocks in one image as shown in Fig. 5.

gm: All of the data sets of the flow and its positional
vector in the image, (v, Ar), are classified by the self
organizing map (SOM), which consists of 225 (15x15)
representational vectors. And after organizing, the indices
of motion primitives are attributed to each representational
vector. Fig. 6 shows the classified image vector (the figure
at the left side) and the distribution of each primitive in
SOM. This SOM outputs the index of appropriate motion
primitive so that the desired flow vector in the image is
realized.
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Fig. 6. Distribution of motion primitives on the SOM of optic flows

primitive and the image flow, f*, g/, are realized by a sim-
ple neural network. The neural network in each primitive
is trained so that it outputs the motion parameters when
the flow vector and the positional vector in the image are
input.

plannning and evaluation function: In this study, the
desired optic flow in the robot’s view for the ball and
the receiver, Spqi, Sre, are determined as a vector from
the current position of a ball to the desired position
(kicking position) in the robot’s view, and as the horizontal
vector from the current position to the vertical center line,
respectively. The next desired optic flow of a ball to be
realized, Spqy;, is calculated based on these desired optic
flows,

| $battll/ ATmaz (8)

Sball/nstepy (9)

Nstep

Spall

where Ar,,q, is the maximum length of the experienced
optic flow. This reference vector is input to the primitive
selector, g,,, and the candidate primitives which can output
the reference vector are activated. The motion parameters
of the selected primitive are determined by the function g;,

a' = g/ (Taut; Sbalt); (10)

where 74 is the current ball position in the robot’s view.
When the primitive selector outputs several candidates of
primitives, the evaluation function depending on the task,
V(m;), determines the preferred primitive. In this study,
our robots have to not only approach to a ball but also



take an appropriate position to kick a ball to the other. For
that, we set the evaluation function as follows,

Vimi) = |8sa = f (Tbau, a')||
+klsre = nstepf (e, a’)ll, (A1)
P = argmin V(m;)

1Eprimitives

where k is the constant value, 7, is the current position
of the receiver in the robot’s view, and P is the selected
primitive.

Fig. 7 shows experimental results of approaching to a
ball. A robot successfully approach to a ball so that the
hypothetical opponent (a poll) comes in front of it.

Fig. 7. Experimental results of approaching to a ball

B. Ball Kicking to the Opponent

It is necessary for our robots to kick a ball to the receiver
very precisely because they cannot sidestep quickly. We
correlate the parameter of kicking motion with the trace of
the kicked ball in the robot’s view so that they can kick to
each other precisely. Fig. 8 shows a proposed controller
for kicking.
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Fig. 8. The system for kicking module

The kicking parameter is the hip joint angle shown
in Fig. 11(a). The quick motion like kicking changes its
dynamics depending on its motion parameter. The sensor
feedback from the floor reaction force sensors is used for
stabilizing the kicking motion. The displacement of the
position of the center of pressure (CoP) in the support
leg is used as feedback to the angle of the ankle joint
of the support leg (see Fig. 11(b)). ,Fig. 11(c) shows the
effectiveness of the stabilization of the kicking motion.
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Fig. 9. The parameter and the stabilization of kicking

The initial ball position and the parameter of the kicking
motion affects sensitively the ball trace in the robot’s view.
To describe the relationship among them, we use a neural
network, which is trained in the environment where the
poll (10 [cm]) is put about 1 [m] in front of the robot
(Fig. 13(a)). The trace of the ball (the effects of the self
motion is subtracted) is recorded every 100 [msec], and the
weights in the neural network are updated every one trial.
Fig. 13(b) shows the time course of error distance between
target poll position and kicked ball in the robot’s view. It
shows that the error is reduced rapidly within 20 [pixel],
which is the same size of the width of the target poll. Fig.
11 shows the kicking performance of the robot.

C. Ball Trapping

Fig. 12 shows an overview of trapping module. Robots
learn the relationship between the position of the foot
in robot’s view and the trap parameter which affects the
position of the foot, to acquire the skill to trap a coming
ball.

Fig. 14 shows the trapping motion by HOAP-2 acquired
by the method described below. In order to realized such a



Fig. 10.

Fig. 11. An experimental result of kicking a ball to the poll
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Fig. 12.  An overview of trapping module

motion, the robot has to predict the position and the arrival
time of a ball from its optic flow captured in the robot view.
For that purpose, we use a neural network which learns the
causal relationship between the position and optic flow of
the ball in visual image of a robot and the arrival position
and time of the coming ball. This neural network is trained
by the data in which a ball is thrown to a robot from the
various positions. Fig. 13 shows several prediction results
of the neural network after learning. Az [pixel] and At
[sec] indicates the errors of the arrival position and the
time predicted at each point (every 0.3[sec]) in the robot’s
view. T" means a duration of the ball rolling. Based on
this neural network, the robots can activate the trapping
motion primitive with the appropriate leg (right or left) at
the appropriate timing (Fig. 14).
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Fig. 13. The prediction of the position and time of a coming ball

IV. INTEGRATION OF THE MODULES FOR
FACE-TO-FACE PASS

To realize passing a ball between two humanoids, the
basic modules described in the previous chapter are inte-
grated by the simple rule as shown in Fig. 15.
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Fig. 15. The rule for integrating motion modules

Fig. 16 shows the experimental result. Two humanoids
with different body and different camera lens realize the
appropriate motions for passing a ball to each other based



Fig. 16. An experimental result of passes between two humanoids

on their own sensorimotor mapping. The passing lasts more
than 3 times.

V. CONCLUSIONS

In this paper, the robots learn the sensorimotor mapping
between optic flow information and motion parameters.
Acquiring basic modules for passing a ball is achieved
using the sensorimotor mapping. In each module, optic
flow information is correlated with the motion parameters.
Through this correlation, a humanoid robot can obtain the
sensorimotor mapping to realize the desired modules. The
experimental results show that a simple neural network
quickly learns and models well the relationship between
optic flow information and motion parameters of each
motion primitive. However, there remain the harder prob-
lems we skip in this paper. First is module decomposition
problem, that is how to determine what are the basic
modules for the given task. Second is planning, that is
how to organize each motion primitive to achieve the given
task. In this paper, we assume module decomposition and
planning are given in advance. Combining the learning in
each module level with that in higher level is the next
problem for us.
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