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Abstract. Generation of a sequence of behaviors is necessary for the
RoboCup Humanoid league to realize not simply a individual robot per-
formance but also cooperative ones between robots. A typical example
task is passing a ball between two humanoids, and the issues are: (1) ba-
sic skill decomposition, (2) skill learning, and (3) planning to connect the
learned skills. This paper presents three methods for basic skill learning
(trapping, approaching to, and kicking a ball) based on optic flow infor-
mation by which a robot obtains sensorimotor mapping to realize the
desired skill, assuming that skill decomposition and planning are given
in advance. First, optic flow information of the ball is used to predict the
trapping point. Next, the flow information caused by the self-motion is
classified into the representative vectors, each of which is connected to
motor modules and their parameters. Finally, optical flow for the envi-
ronment caused by kicking motion is used to predict the ball trajectory
after kicking. The experimental results are shown and discussion is given
with future issues.

1 Introduction

Recent progress of humanoid robots such as ASIMO [?], QRIO [?], HOAP [?],
and MORPH [?] have been attracting many people for their performances of
human like behaviors. However, they are still limited to very few behaviors of
individuals such as walking and so on. In order to extend the capability of
humanoids, various kinds of behaviors with objects or other agents should be
developed. RoboCup has been providing an excellent test-bed for such a task
domain, that is, ball operation and cooperation with teammates (competition
with opponents) [?]. Towards the final goal of RoboCupSoccer, the humanoid
league has been held since 2002 in Fukuoka, and several technical challenges such
as standing on one leg, walking, and PK have been attacked. However, the level
of the performance is still far from the roadmap to the final goal [?]. Further,
many teams developed humanoid behaviors based on the designers knowledge
on the environment, and therefore seem to be brittle against the environmental



changes. It is expected that a robot obtains the environmental model through
the interactions with its environment.

Optical flow has been used to learn the sensorimotor mapping for obstacle
avoidance planned by the learned forward model [?] or by finding obstacles that
show different flows from the environments using reinforcement learning [?].
Also, it is used for object recognition by active touching [?]. In these studies, the
number of DoFs is much fewer than humanoids, therefore it seems difficult to
apply their methods to realize various kinds of humanoid behaviors. Especially,
generation of a sequence of behaviors is very hard but necessary for the RoboCup
Humanoid league to show not simply an individual robot performance but also
cooperative ones between two robots. In the latter case, the following issues
should be considered:

1. decomposition into basic skills,
2. basic skill learning, and
3. switching the learned skills to generate a sequence of behaviors.

A typical example task is passing a ball between two humanoids (face-to-
face pass). Since attacking all of these issues together is so difficult, we focus on
the second issue, and present three methods for basic skill learning (trapping,
approaching to, and kicking a ball) based on optic flow information by which a
robot obtains sensorimotor mapping to realize the desired skill, assuming that
skill decomposition and planning are given in advance. First, optic flow informa-
tion of the ball is used to predict the trapping point. Next, the flow information
caused by the self-motion is classified into the representative vectors, each of
which is connected to motor modules and their parameters. Finally, optical flow
for the environment caused by kicking motion is used to predict the ball tra-
jectory after kicking. The experimental result are shown and discussion is given
with future issues.

2 Task, Robot, and Environment

2.1 Robots Used

Fig. 1 shows biped robots used in the experiments, HOAP-1, HOAP-2, and their
on-board views. HOAP-1 is 480 [mm] in height and about 6 [kg] in weight. It
has a one-link torso, two four-link arms, and two six-link legs. The other robot,
HOAP-2, is a successor of HOAP-1. It is 510 [mm] in height and about 7 [kg] in
weight. It has two more joints in neck and one more joint at waist. Both robots
have four force sensing registors (FSRs) in their foots to detect reaction force
from the floor and a CCD camera with a fish-eye lens or semi-fish-eye lens.

These robots detect objects in the environments by colors. In this experiment,
a ball is colored orange, and the knees of the opponent robot are colored yellow.
The centers of these colored regions in the images are recorded as the detected
position.



Fig. 1. HOAP-1 with fish-eye lens and HOAP-2 with semi-fish-eye lens

2.2 Task and Assumptions

”Face-to-face pass” can be decomposed into a sequence of different behaviors:

– trapping a ball which is coming to the player,
– approaching to kick a trapped ball, and
– kicking a ball to the opponent.

All these basic behaviors need the appropriate relationship between motion
parameters and the environment changes. For example, to trap a ball appropri-
ately, the robots must estimate the arrival time and position of the coming ball.
To approach to a kicking position, the robot should know the causal relationship
between the walking parameters and the positional change of the objects in its
image. Further, to kick a ball to the opponent, the robot must know the causal
relationship between the kicking parameters and the direction the kicked ball
will go.

Moreover, basic skills to realize these behaviors should be activated at the
appropriate situations. Here, the designer determines these situations to switch
the behaviors, and we focus on the skill learning based on optic flow information.
Fig. 2 shows an overview of our proposed system.

3 Skill Learning Based on Optic Flow Information

3.1 Ball Trapping

Fig. ?? shows the trapping motion by HOAP-1 acquired by the method described
below. In order to realized such a motion, the robot has to predict the position
and the arrival time of a ball from its optical flow captured in the robot view.
For that purpose, we use a neural network which learns the causal relationship
between the position and optical flow of the ball in visual image of a robot and
the arrival position and time of the coming ball. This neural network is trained
by the data in which a ball is thrown to a robot from the various positions. Fig.
3 shows several prediction results of the neural network after learning. ∆x [pixel]
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Fig. 2. A system overview

and ∆t [sec] indicates the errors of the arrival position and the time predicted
at each point in the robot’s view. Based on this neural network, the robots can
activate the trapping motion module with the appropriate leg (right or left) at
the appropriate timing (Fig. ??).
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Fig. 3. The prediction of the position and time of a coming ball

3.2 Ball Approaching

Approaching to a ball is the most difficult task among the three skills because
this task involves several motion modules each of which has parameters to be



Fig. 4. An experimantal result of a trapping skill

determined. These motions yields various types of image flows depending on the
values of the parameters which change continuously. We make use of environ-
mental image flow pattern during various motions to approach to the ball.

Let the motion flow vector ∆r at the position r in the robot’s view when a
robot takes a motion, a. The relationships between them can be written,

∆r = f(r , a), (1)
a = g(r , ∆r). (2)

The latter is useful to determine the motion parameters after planning the mo-
tion path way in the image. However, it is difficult to determine one motion to
realize a certain motion flow because different motion modules can produce the
same image flow by adjusting motion parameters. So, we separate the description
of the relationship between the motion and the image flow into the relationship
between the motion module and the image flow, and the relationship between
the motion parameters in each module and the image flow (Fig. ??), as follows.

mi = gm(r ,∆r), (3)
a i = (pi

1, p
i
2)

T = gi
p(r ,∆r) (4)

∆r = f i(r ,a i), (5)

where mi is the index of the i-th motion module and a i = (pi1, pi2)T are the
motion parameter vector of the i-th motion module. In this study, the motion
modules related to this skill consists of 6 modules; straight walk (left and right),
curve walk (left and right), and side step (left and right). Each of the modules
has two parameters which have real values, as shown in Fig. ??.

Given the desired motion pathway in the robot’s view, we can select appropri-
ate module by gm, and determine the motion parameters of the selected motion
module by gi

p based on the learned relationships among the modules, their pa-
rameters, and flows. If the desired image flow yields several motion modules, the
preferred motion module is determined by value function.

Images are recorded every step and the image flow is calculated by block
matching between the current image and the previous one. The templates for
calculating flows are 24 blocks in one image as shown in Fig. ??.

gm All of the data sets of the flow and its positional vector in the image, (r ,∆r),
are classified by the self organizing map (SOM), which consists of 225 (15×15)
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Fig. 5. An overview of the approaching skill
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Fig. 7. An example of an optic flow in the robot’s view



representational vectors. And after organizing, the indices of motion modules
are attributed to each representational vector. Fig. ?? shows the classified image
vector (the figure at the left side) and the distribution of each module in SOM.
This SOM outputs the index of appropriate motion module so that the desired
flow vector in the image is realized.
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Fig. 8. Distribution of motion modules on the SOM of optic flows

f i, gi
p The forward and inverse functions that correlates the relationship be-

tween the motion parameters in each module and the image flow, f i, gi
p, are re-

alized by a simple neural network. The neural network in each module is trained
so that it outputs the motion parameters when the flow vector and the positional
vector in the image are input.

plannning and evaluation function In this study, the desired optic flow
in the robot’s view for the ball and the receiver, sball, sre, are determined as a
vector from the current position of a ball to the desired position (kicking position)
in the robot’s view, and as the horizontal vector from the current position to
the vertical center line, respectively. The next desired optic flow of a ball to be
realized, s̃ball, is calculated based on these desired optic flows,

nstep = ‖sball‖/∆rmax, (6)
s̃ball = sball/nstep, (7)

where ∆rmax is the maximum length of the experienced optical flow. This ref-
erence vector is input to the module selector, gm, and the candidate modules
which can output the reference vector are activated. The motion parameters of
the selected module are determined by the function gi

p,

a i = gi
p(r ball, s̃ball), (8)



where r ball is the current ball position in the robot’s view. When the module se-
lector outputs several candidates of modules, the evaluation function depending
on the task, V (mi), determines the preferred module. In this study, our robots
have to not only approach to a ball but also take an appropriate position to kick
a ball to the other. For that, we set the evaluation function as follows,

selected module = arg min
i∈modules

[
‖s̃ball − f i(r ball,a

i)‖+ k‖sre − nstepf
i(r re,a

i)‖
]
,

(9)
where k is the constant value, and rre is the current position of the receiver in
the robot’s view.

Fig. ?? shows experimental results of approaching to a ball. A robot suc-
cessfully approach to a ball so that the hypothetical opponent (a poll) comes in
front of it.

(a) (b)

Fig. 9. Experimental results of approaching to a ball

3.3 Ball Kicking to the Opponent

It is necessary for our robots to kick a ball to the receiver very precisely because
they cannot sidestep quickly. We correlate the parameter of kicking motion with
the trace of the kicked ball in the robot’s view so that they can kick to each
other precisely. Fig. ?? shows a proposed controller for kicking.

The kicking parameter is the hip joint angle shown in Fig. 11(a). The quick
motion like kicking changes its dynamics depending on its motion parameter.
The sensor feedback from the floor reaction force sensors is used for stabilizing
the kicking motion. The displacement of the position of the center of pressure
(CoP) in the support leg is used as feedback to the angle of the ankle joint
of the support leg (see Fig. 11(b)). ,Fig. 11(c) shows the effectiveness of the
stabilization of the kicking motion.
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The initial ball position and the parameter of the kicking motion affects
sensitively the ball trace in the robot’s view. To describe the relationship among
them, we use a neural network, which is trained in the environment where the
poll (10 [cm]) is put about 1 [m] in front of the robot (Fig. 13(a)). The trace
of the ball (the effects of the self motion is subtracted) is recorded every 100
[msec], and the weights in the neural network are updated every one trial. Fig.
13(b) shows the time course of error distance between target poll position and
kicked ball in the robot’s view. It shows that the error is reduced rapidly within
20 [pixel], which is the same size of the width of the target poll. Fig. ?? shows
the kicking performance of the robot.
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Fig. 13. An experimental result of kicking a ball to the poll



4 Integration of the Skills for Face-to-face Pass

To realize passing a ball between two humanoids, the basic skills described in
the previous chapter are integrated by the simple rule as shown in Fig. ??.
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Fig. 14. The rule for integrating motion skills

Fig. ?? shows the experimental result. Two humanoids with different body
and different camera lens realize the appropriate motions for passing a ball to
each other based on their own sensorimotor mapping. The passing lasts more
than 3 times.

5 Conclusions

In this paper, acquiring basic skills for passing a ball between two humanoids
is achieved. In each skill, optic flow information is correlated with the motion
parameters. Through this correlation, a humanoid robot can obtain the sensori-
motor mapping to realize the desired skills. The experimental results show that
a simple neural network quickly learns and models well the relationship between
optic flow information and motion parameters of each motion module. However,
there remain the harder problems we skip in this paper. First is skill decompo-
sition problem, that is how to determine what are the basic skills for the given
task. Second is planning, that is how to organize each motion module to achieve
the given task. In this paper, we assume skill decomposition and planning are
given in advance. Combining the learning in each skill level with that in higher
level is the next problem for us.



Fig. 15. An experimental result of passes between two humanoids
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