
Motion Recognition and Generation for Humanoid based on Visual-Somatic
Field Mapping

1Masaki Ogino,1Shigeo Matsuyama,1Jun’ichiro Ooga, and1,2Minoru Asada
1Dept. of Adaptive Machine Systems,2HANDAI Frontier Research Center,

Graduate School of Engineering, Osaka University
2-1, Yamada-Oka, Suita, Osaka, Japan

{ogino, shigeo, ooga}@er.ams.eng.osaka-u.ac.jp, asada@ams.eng.osaka-u.ac.jp

Abstract

This paper presents a method of imitation learning based
on visuo-somatic mapping from observing the demonstra-
tor’s posture to reminding the self posture via mapping from
the self motion observation to the self posture for both mo-
tion understanding and generation. First, various kinds of
posture data of the observer are mapped onto posture space
by self organizing mapping (hereafter, SOM), and the tra-
jectories in the posture space are mapped onto a motion
segment space by SOM again for data reduction. Second,
optical flows caused by the demonstrator’s motions or the
self motions are mapped onto a flow segment space where
parameterized flow data are connected with the correspond-
ing motion segments in the motion segment space. The
connection with the self motion is straightforward, and is
easily acquired by Hebbian Learning. Then, the connec-
tion with the demonstrator’s motion is automatic based on
the learned connection. Finally, the visuo-somatic mapping
is completed when the posture space (the observer: self)
and image space (the demonstrator: other) are connected,
which means observing the demonstrator’s posture associ-
cates the self posture. Experimental results with human mo-
tion data are shown and the discussion is given with future
issues.

1 Introduction

Humanoid robot is expected to have behaviors like hu-
man as it is supposed from its appearance. The motion
programming for such a robot with multiple joints is a
hard task, therefore, imitation is one of the plausible solu-
tions for humanoid motion programming [9]. This attempt
has already achieved success to some extent in real robots.
Nakazawa et al. [5] have realized a dancing humanoid robot
that can imitate human dance performances. They segment

human dancing motion into typical motion primitives with
parameters. Ijspeert et al. [2] have focused on dynamical
aspects of imitation and proposes the methods to describe
the observed motion using the basic non-linear dynamics
primitives.

On the other hand, imitation is also supposed to a fun-
damental framework for motion recognition in biological
system. Billard and Mataric [1] emphasized importance of
motion primitives, and constructed the motion control sys-
tem based on the CPG modules and the learning modules.
Inamura et al. [7] proposed a system that describes the self
and the demonstrator’s motions in the same mimesis loop,
in which motions are recognized and generated in the hid-
den Markov models.

However, almost existing approaches to imitation in
robotics assume that the angles of others’ links are avail-
able. The somatosensory signals or motion commands of
others are not accessible and it is necessary to have a mech-
anism that converts visual information observing others to
self motion. Recently, Kuniyoshi et al. [4] proposed a learn-
ing system for early imitation. They suppose the optical
flow information is the key to induce the self motion cor-
responding to the observed motion. However, they didn’t
mention how the early imitation can be extended to the
higher level of learning.

This paper presents a method of imitation learning based
on visuo-somatic mapping from observing the demonstra-
tor’s posture to reminding the self posture via mapping from
the self motion observation for both motion understanding
and generation. First, various kinds of posture data of the
observer are mapped onto aposture spaceby self organiz-
ing mapping [3] (hereafter, SOM), and the trajectories in
the posture space are mapped onto amotion segment space
by SOM again for data reduction. Second, optical flows
caused by the demonstrator’s motions or the self motions
are mapped onto aflow segment spacewhere parameterized
flow data are connected with the corresponding motion seg-
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Figure 1. System overview

ments in the motion segment space. The connection with
the self motion is straightforward, and is easily acquired by
Hebbian Learning. Then, the connection with the demon-
strator’s motion is automatic based on the learned connec-
tion. Finally, the visuo-somatic mapping is completed when
the posture space (the observer: self) and image space (the
demonstrator: other) are connected, which means observing
the demonstrator’s posture associates the self posture like a
mirror system [10]. Experimental results with human mo-
tion data are shown and the discussion is given with future
issues.

2 A System Overview

2.1 Basic assumptions

Here, we assume the followings to realize the visual im-
itation based on the visuo-somatic mapping:

1. No a priori knowledge on the link structure, that is,
connections between joints.

2. No a priori knowledge on the body part (joint) corre-
spondence between the demonstrator and the observer.

3. Both the demonstrator’s and the self motions can be
observed in terms of a temporal sequence of joint vec-
tors.

4. The joint angles of the self posture can be observed,
but no relationship between the self posture and the
flow segment space is given.

5. Currently, we focus on the mirror image imitation.
This means the right (left) side of the demonstration

corresponding to the left (right) side side of the obser-
vation.

2.2 Imitation system

Fig. 1 shows the proposed system, consisting of two
sub-processing systems,Visual Information processing sys-
temandSomatic Information processing system. In these
processing sub-systems, row sensory data are mapped onto
the corresponding two dimensional Self-Organizing Maps
(SOMs) [3]. The images observing the demonstrator’s mo-
tion are first mapped ontoimage spacewhich includes the
posture image of the demonstrator, and thenflow segment
spacein which the changes in posture are represented. The
visual feature space is also utilized to represent the self
motion, too. On the other hand, the self somatic sen-
sory data are mapped ontoposture spaceand their changes
are mapped ontomotion segment space. After generation
of these maps independently, the flow segment space and
the motion segment space are connected based on Hebbian
learning.

The connection between the visual feature space and the
motion segment space is easily carried out by using Hebbian
learning based on the simultaneous activations of segments
in both spaces during the self motions. Once this connec-
tion is acquired, the connection between the flow segment
space for the demonstrator’s motion and the motion seg-
ment space is automatic based on the learned connection
between the visual feature space and the motion segment
space. Through these connections, the mapping from the
image space of the demonstrator’s posture to the self pos-
ture space is enabled, that is, visuo-somatic mapping can be
obtained.



In the followings, the details of each sub processing sys-
tem are explained in section 3, and the mapping among
them is shown in section 4.

2.3 Sensory data

We prepare the sensory data by using human motions
acquired by a motion capturing system. The captured data,
which are three dimensional data sets in the global coordi-
nate system, are converted to the two dimensional data on a
virtual camera images captured by the observer (self). The
angles between links in a human model are also calculated
to be used as the self posture data. Figs.??(a) and??(b)
show the attached place of labels as joints to be captured
and a sample of captured data of the demonstrator’s mo-
tion, respectively. A joint angle vector is mapped onto the
self posture space and the segmented trajectories on the map
are mapped on motion segment space. The spherical image
projection from the camera position at the observer head is
assumed to capture the whole self body image. Fig. 3 shows
examples of the self body image (a) and the demonstrator’s
one (b) on the spheres, and their development onto a plane
(c).

Twelve kinds of motions are captured from the human
motion performances. They are combinations of motion,
side, and part such as “raise,” “wave,” and “rotate” as mo-
tions, “left,” “right,” or “both” as sides, and “hand,” and
“knee” as parts. Also a “walking” motion is added as a
whole body motion.

3 Construction of SOMs for behavior recog-
nition and generation

3.1 Posture space and motion segment space

We construct aposture spaceSOM from thesomatic sen-
sation information, which is the sequence of the vectors
consisting of sixteen angles calculated from the captured
motion data. The size ofposture spaceSOM is 15× 15,
and it is constructed by 240 [frames] ( 8 [sec]) per each mo-
tion. Fig. 4 (a) shows the resultant SOM.

Since the posture data are input sequentially, we can vi-
sualize how posture data are connected each other in the
posture space. Fig. 4 (b) shows such data indicating that the
trajectries of motions are roughly segmented and construct
the clusters corresponding to performed actions. These tra-
jectories are divided into small segments, each of which
includes 10 [frames] of trajectories on the posture space
SOM, and are clustered in the upper layer SOM, motion
segment space, (Fig. 4 (c)).
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(a) Position of the camera op-
tical center

(b) An example of captured motions

Figure 2. Capturing data
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Figure 3. Image data to be input to the system
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Figure 4. The soms in self somatic sensation
information processing system

3.2 Demonstrator’s posture image space

A demonstrator’s posture image space (hereafter, image
space in short) consists of the representative image position
vectors obtained by self organizing mapping of image po-
sitions of joints of the human model in Fig.??. Fig. 5
(a) shows the image space where various postures are clus-
tered into 15× 15 representative postures. Similar to the
posture space based on the somatic information, we can vi-
sualize how posture image data are connected each other in
this space. Fig. 5 (b) shows such data which indicate that
the trajectories of motions are roughly segmented and con-
struct the clusters corresponding to performed actions.

(a) Demonstrator’s posture
image space
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Figure 5. A demonstrator’s posture image
space

3.3 The flow segment space

The problem here is how to associate the observed flow
caused by the demonstrator’s motion with the self motion.
If the flows by the demonstrator’s motions are similar to
the flows by the self motions, the desired association seems



easy to find because the connection between the observed
self motion and the self motion segment can be easily found
based on the simultaneous activations during the self mo-
tion. However, it would not be so due to the viewpoint
difference. Then, as the common features of the flow seg-
ments, we chose the direction and the relative position of the
flow segments. Fig. 6 indicates the directions of flow seg-
ments by the demonstrator (other) and the observer (self),
where we can see that the directions are very similar to each
other although there are slight differences in the directional
changes between them. The relative positions are quantized
into four regions (top left, top right, bottom left, and bot-
tom right) by setting the centroid of posture image vectors
as the origin. These four regions are called attention areas.
Fig. 7 shows that the positions of joints are similar to each
other between the demonstrator’s and the observer’s in spite
of large shape difference.
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Figure 6. The flow directions from different
viewpoints
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Figure 7. Attention Area

By using the quantized directions and the normalized
magnitudes of the flows, and the attention area, the flow
segment space is constructed. A data structure for the flow
segment space is shown in Fig. 8 (a).

Although Fig. 6 shows the directions of flow vectors
in the same parts of self and a demonstrator are almost

the same in spite of the camera position, the correspon-
dence between self and a demonstrator’s body are unknown.
We construct the perceptive field of motion, flow segment
space, based on the flow directions and the relative magni-
tude of flow vectors. The flow segment space has the same
number of layers as observed labels (joints), which consists
of Fp unit. Each unit has the representative direction corre-
spondent to quantized direction ranging from0 to 2π (see
Fig. 8).

The directions of the flows are segmented when the sign
of horizontal or vertical element of flow vector is inverted.
In each segment, the directions are averaged. Suppose the
time whenn-th flow inversion happens isTn, then the aver-
aged flow direction is given by

§φ
i (t) =

1
Tn+1−Tn

∫ Tn+1

Tn

φF
i (s)ds (Tn < t < Tn+1), (1)

whereφF
i (t) indicates the flow direction of body segment

i at timet. The averaged direction data are sorted by their
length of the flow vectors. And thei-th data is assigned to
the i-th layer in flow segment space. In each layer, the unit
that has the nearest direction to the input data is activated.

3.3.1 Attention area

Although the positions of flow vectors in the robot’s view
are quite different between the self and the demonstrator,
the relative positions among them (upper right, upper left,
lower right and lower left) are roughly maintainted well as
shown in Fig. 7. Using this feature, theattentional area
describes what part of the self image includes first flow vec-
tors.

Let Nf the number of observed points of the self and the
demonstrator’s body and the regions around the center of
observed pointsR1,R2,R3 andR4 as shown in Fig. 7, then
the total flow speed included in each regionRi is given by

Fj(t) =
∫ Nf

i=1
pi(t)||vi(t)||, (2)

pi(t) =
{

1 i f ui(n) ∈ Rj

0 else
( j = 1, · · · 4), (3)

wherevi(t) is the observed flow vector, andui(t) is the po-
sition vector of observed pointi at timet. Note thati does
not correspond to the labeled point of the body. We define
the relative total strength of flow among regions as

A j(t) =
Fj(t)

∑4
n=1Fn(t)

( j = 1, · · · 4). (4)

The input vector to attention area,SA(t), consists of bina-
rizedA j(t),

SA(t) = (AS
1(t),A

S
2(t),A

S
3(t),A

S
4(t)) (5)

AS
j (t) =

{
1, i f A j(t) ≥ 0.20
0, else

(6)



Attention area space consists of all the combinations of ac-
tivated areas,24 = 16, as shown Fig. 8.

(a) Flow direction

Attentin Area
Infomation

(b) Attention
Area

Figure 8. The flow segment space

4 Mapping between visual and somatic field

4.1 Self visual-somatic sensation mapping

The simultaneous activations of the units in the flow seg-
ment space and the self posture space during self motion
make it possible to find correspondence between the units
in those spaces (see Fig. 9). The connection coefficients
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Figure 9. Self visual-somatic sensation map-
ping

between the units in each space are learned based on Heb-
bian learning. All the connection coefficients are initialized
to 0s, and during the self motion the coefficient,wAB, which
is the connection coefficient betwen thei-th unit in space A
and thej-th unit in space B, is updated during self motion,
as follows,

wAB
i j (t +1) = wAB

i j (t)+ ε(yA
i (t)yB

j (t)−yA
i (t)2wAB

i j (t)). (7)

At the same time, the time sequences of the activated units
in motion segment space during various motions are mem-
orized as the motion modules inmotion memory.

Figure 10. Arrangement of each space

4.2 Recognition of other person’s motion

After acquisition of self visual-somatic mapping, the in-
put of image data observing a demonstrator’s motion acti-
vates the units in the motion segment space through the flow
segment space via connections between them (Fig. 11). Let
the activation level of thei-th unit in flow directionyF

i (t)
and that of thej-th unit in attention areayA

j (t), the activa-
tion level of thek-th unit in motion segment space,yM

k (t) is
given by

yM
k (t) =

NF

∑
i=1

wFM
ik yF

i +
NA

∑
j=1

wAM
jk yA

j (8)

The quantization in the flow segment space is coarse and
the mapping between the flow segment space and the mo-
tion segment space is not one-to-one mapping. The motion
of a demonstrator activates multiple units in the motion seg-
ment space at a time, which makes it difficult to identify the
corresponding motion module. So, we compare the tem-
poral sequences of activated units of observed motion with
those of memorized motion modules in the motion segment
space. To do that, we define the evaluation function,Em,
which indicates the similarity of the time sequence of acv-
tiated units of an observed motion to that of them-th mem-
orized motion as follows,

Em = max
st

∫ T

0

NM

∑
i=1

yi(t)mi(ts+ t)dt. (9)

Thus, the observed motion is recognized as the same as the
motion module that maximizesEm.

4.3 Mapping between a self posture image space
and a demonstrator’s posture image

Recalling the self motion from the observation of a
demonstrator’s motion makes it possible to correlate the
demonstrator’s posture image space in visual information
processing system with the self posture space in somatic
sensation information processing system (Fig. 12). When
observing a demonstrator’s motion, the unit in the image
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Figure 12. Self-Other Visual-Somatic sensa-
tion mapping

space and the unit in the posture space activate simultane-
ously. So we can use Hebbian learning again between these
two maps.

Fig. 13 shows the recalled posture (the rightmost fig-
ure) from the observed image (the leftmost figure). The two
maps in the middle of the figures describe the activated units
in image space(left) and that posture space (right) after heb-
bian learning.

Figure 13. Recalling somatic sensation by
Self-Other visual-somatic sensation mapping

5 Conclusions

In this paper, we proposed a learning system for imita-
tion based on visuo-somatic mapping. This system excludes
the pre-designed model of a demonstrator as much as possi-
ble. The demonstrator’s model is made through demonstra-
tor’s images in the demonstrator’s posture image space. The
model of self is not pre-designed, either. It is constructed
by self-organizing the self motion information in self pos-
ture space and motion segment space. The primitive visual
features are related to the representative vectors in motion
segment space during self motion. This connection induces
the self motion when observing demonstrator’s motions and



further mapping between demonstrator’s posture image and
self posture space is made. After constructing the visuo-
somatic mapping, this system can directly activate the self
posture corresponding the observed demonstrator’s image.

Although initial aims to construct the visuo-somatic
mapping through learning are accomplished in this system,
it has many problems for practical use as an imitation sys-
tem. First this system assumes that an observer always
stands face to face with a demonstrator, and this sytem
does not have concept about the translation or rotation to
the ground of the demonstrator. An observer can recog-
nize only jestures of the demonstrator. Second, the resul-
tant visuo-somatic mapping is not so accurate as to make
new motion modules only from observation of demonstra-
tor’s motion, because the sequence of the activated postures
is not smooth.

For the first problem, we are now extending our model so
that it can describe the transition and rotation of a demon-
strator relative to the ground. The second problem can be
solved by using velocity information acquired by another
pathway. Acquiring new motions which are not experienced
through observation is the next challenge for us.
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