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Abstract

This paper presents a method for learning the parameters of rhythmic walking to generate pur-

posive humanoid motions. The controller consists of the two layers: rhythmic walking is realized by

the lower layer, which adjusts the speed of the phase on the desired trajectory depending on sensory

information, and the upper layer learns (1) the feasible parameter sets that enable stable walking,

(2) the causal relationship between the walking parameters to be given to the lower-layer controller

and the change in the sensory information, and (3) the feasible rhythmic walking parameters by

reinforcement learning so that a robot can reach to the goal based on visual information. The ex-

perimental results show that a real humanoid learns to reach the ball and to shoot it into the goal

in the context of the RoboCupSoccer competition, and the further issues are discussed.
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1 INTRODUCTION

Recent progresses in humanoid studies have made bipedal walking possible in real robots. The main

approaches can be divided into two categories: the Zero Moment Point (ZMP) approach [14] and the

inverted pendulum model [3]. They are characterized by using the physical parameters of a robot model

explicitly to obtain the desired trajectory of each joint to be realized during walking.

However, another approach has been studied as a method which does not need to represent explicitly

the precise structural parameters of a robot for walking control. This is also called a rhythmic walking

based approach because the controller in this method adjusts its walking rhythm depending on sensory

information so that the global entrainment of dynamics between the robot and the environment takes

place.

Taga et al. [11] propose the Central Pattern Generator (CPG) model [2] for human walking based on

the formulations of nonlinear dynamics. The network system changes its phase depending on the sensor

information. In the simulation experiments, this model realizes stable walking under various kinds of

disturbances [11, 7]. In the his CPG model, the output value of each neuron is used as the torque to

be applied to a corresponding joint while almost of the currently existing humanoid robots are driven
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by high gain proportional derivative (PD) controllers instead of torque control. Therefore, it is difficult

to apply Taga’s CPG model directly to real robots. However, even such a robot with high gain PD

controllers can realize stable walking with a controller that uses sensor information properly. Pratt [9]

realizes energy efficient walking in a real robot with a controller that consists of state machines. The

state transition of the controller occurs when the swing leg touches the ground. Tsuchiya et al. [13]

realize stable walking based on a method in which a trajectory controller determines the shape of the

trajectory and a phase controller changes the speed of the desired angle on the trajectory, so that the

sensor information adjusts the phase speed.

In rhythmic walking, the control parameters are found heuristically, not by planning as in the ZMP

approach. This makes it difficult to construct an upper-layer controller to drive the movement of a

robot because the walking parameters such as walking step are not found until the robot interacts with

the environment. Taga [12] and Kimura et al. [4] construct the upper-layer controller, which gives the

control parameters to the lower CPG controller depending on visual information so that the robot can

avoid obstacles or climb over a step. In these methods, the designer supplies the adjusting parameters in

advance. However, for making a robot more adaptive to dynamic situations, it is necessary to learn the

relationship between the parameters of the lower rhythmic walking controller and the resultant change

of the environment.

This paper introduces the layered controller, in which the lower-layer controller realizes rhythmic

walking based on the controller proposed by Tsuchiya et al. [13] and the upper-layer controller learns the

parameters of the lower-layer controller based on visual information. There are three points in learning

the upper-layer controller: (1) in the first stage, it learns the feasible parameters of the lower-layer

controller that enable a robot to walk, (2) to accelerate the learning process, the upper-layer controller

learns the model of the world: the relationship between the control parameters given to the lower

rhythmic walking controller and the change of the visual sensor information, and (3) the upper-layer

controller learns which parameters should be given to reach a goal by reinforcement learning.

The rest of this paper is organized as follows: First, the lower-layer controller that enables a rhythmic

walk is introduced. Next, we describe the upper-layer controller in which the parameters of the lower-

layer controller are learned by reinforcement learning. Then, the experimental results applied to a

RoboCupSoccer task [5], “approach a ball,” are shown, and discussion is given.

2 A RHYTHMIC WALKING CONTROLLER

2.1 A biped robot model

Fig. 1 shows a biped robot model used in the experiment which has a one-link torso, two four-link

arms, and two six-link legs. All joints rotate with a single degree-of-freedom (DoF). Each foot has four

force-sensing-resistor (FSR) sensors to detect reaction force from the floor, and a CCD camera with a

fish-eye lens is attached at the top of the torso.
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Figure 1: A model of biped locomotion robot
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Figure 2: A walking control system
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2.2 A rhythmic walking controller based on CPG principle

We build a lower-layer controller based on one proposed by Tsuchiya et al. [13]. The controller consists of

two sub-controllers: a trajectory controller and a phase controller (see Fig. 2). The trajectory controller

outputs the desired trajectory of each limb depending on the phase that is given by the phase controller.

The phase controller consists of four oscillators, each of which is responsible for the movement of each

limb (see Fig. 3). Each oscillator changes its speed depending on the touch sensor signal, and the effect

is reflected on the oscillator in each limb. As a result, the desired trajectory of each joint is adjusted

so that the global entrainment of dynamics between the robot and the environment takes place. In the

following, the details of each controller are given.

2.2.1 Trajectory controller

The trajectory controller calculates the desired trajectory of each joint depending on the phase given by

the corresponding oscillator in the phase controller. Four parameters characterize the trajectory of each

joint as shown in Fig. 4. For joints 3, 4 and 5, which coincide with pitch axis, the desired trajectory

is determined so that in the swing phase the foot trajectory draws a ellipse that has the radii h in the

vertical direction and β in the horizontal direction, respectively. For joints 2 and 6, which coincide with

roll axis, the desired trajectory is determined so that the leg tilts from −W to W relative to the vertical

axis. The amplitude of the oscillation, α, determines the desired trajectory of joint 1. The desired

trajectories are summarized by the following functions:

FSR FSR

Right leg
oscillator

Left leg
oscillator

Right arm
oscillator

Left arm
oscillator

φ2φ1

φ1 φ2
arm arm

leg leg

Figure 3: A phase control system

θ1 = α sin(φ), (1)

θ2 = W sin(φ), (2)

θi = fi(φ, h, β), (i = 3, 4, 5) and (3)

θ6 = −W sin(φ). (4)
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Figure 4: Joint angles

The detail of fi is explained in the Appendix. Among the four parameters described above, α, which

determines the walking step length, and β, which determines the walking direction, are selected as

rhythmic parameters of walking. Although these parameters characterize approximate direction and

step length, they do not determine the resultant walking as precisely because of slippage between the

support leg and the ground. These parameters are learned in the upper-layer learning module, which is

described in 3.

2.2.2 Phase controller

The phase controller sets the phase that determines the desired value of each joint. The phase controller

consists of two oscillators, φR and φL, for the right and left leg, respectively. The dynamics of each

oscillator is determined by the basic frequency, ω, the interaction term between two oscillators, and the

feedback signal from the sensory information,

φ̇L = ω −K(φL − φR − π) + gL (5)

φ̇R = ω −K(φR − φL − π) + gR. (6)

The second term on the RHS in the above equations ensures that the oscillators have opposite phases.

The third term, feedback signal from sensor information, is given as follows:

gi =





K ′Feedi (0 < φ < φC)

−ω(1− Feedi) (φC ≤ φ < 2π)
(7)

i = {R,L},

where K ′, φC and Feedi denote feedback gain, the phase when the swing leg contacts with the ground,

and the feedback sensor signal, respectively. Feedi returns 1 if the FSR sensor value of the corresponding

leg exceeds a certain threshold value, otherwise 0. The third term in (5) and (6) ensures that the mode

switching between the swing phase and the support phase happens appropriately according to the ground
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contact information from the FSR sensors. In this paper, the values of parameters are set as follows:

φC = π [rad], ω = 5.23 [rad/sec], K = 15.7 and K ′ = 1.

3 REINFORCEMENT LEARNING WITH RHYTHMIC WALK-

ING PARAMETERS

3.1 The principle of reinforcement learning

Agent

Environment

at : Action

rt : Reward

st : Statest+1 : Next state

Figure 5: A basic model of agent-environment interaction

Reinforcement learning has been receiving increased attention as a method of robot learning with

little or no a priori knowledge and a higher capability for reactive and adaptive behaviors. Fig. 5 shows

a basic model of robot-environment interaction [10], in which a robot and environment are modelled by

two synchronized finite state automatons interacting in a discrete time cyclical processes. The robot

senses the current state st ∈ S of the environment and selects an action at ∈ A. Based on the state

and action, the environment makes a transition to a new state st+1 ∈ S and generates a reward rt+1

that is passed back to the robot. Through these interactions, the robot learns a purposive behavior

to achieve a given goal. For the learning to converge correctly, the environment should satisfy the

Markovian assumption that the state transition depends on only the current state and the action taken.

A stochastic function T which maps a state-action pair to the next state (T : S ×A → S) models the

state transition. Using T , the state transition probability Pst,st+1(at) is given by

Pst,st+1(at) = Prob(T (st, at) = st+1). (8)

The reward function gives the immediate reward, rt, in terms of the current state by R(st), that is

rt = R(st). Generally, Pst,st+1(at) (hereafter Pa
ss′) and R(st) (hereafter Ra

ss′) are unknown.

The aim of the reinforcement learner is to maximize the accumulated summation of the given rewards

(called return) given by

return(t) =
∞∑

n=0

γnrt+n, (9)

where γ (0 ≤ γ ≤ 1) denotes a discounting factor to give the temporal weight to the reward.
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If the state transition probability is known, the optimal policy that maximizes the expected return

is given by finding the optimal value function V ∗(s) or the optimal action value function Q∗(s, a) as

follows. Their derivation can be found elsewhere [10].

V ∗(s) = max
a

E{rt+1 + γV ∗(st+1)|st = s, at = a}
= max

a

∑

s′
Pa

ss′ [Ra
ss′ + γV ∗(s′)] (10)

Q∗(s, a) = E{rt+1 + γ max
a′

Q∗(st+1, a
′)|st = s, at = a}

=
∑

s′
Pa

ss′

[
Ra

ss′ + γ max
a′

Q∗(s′, a′)
]

(11)

In this paper, the learning module examines the state transition when both feet are in contact with

the ground so that the stable visual information can be obtained (some experiments show the possibility

that human brains may calculate the length to the obstacle by visual information at the double stance

phase [6]). The state space s consists of the visual information sv and the robot posture sp, and

the action is setting the two parameters of rhythmic walking. Details are explained in the following

subsections.

3.2 Construction of action space based on rhythmic parameters

The learning process has two stages. The first stage constructs the action space consisting of feasible

combinations of two rhythmic walking parameters (α, β). To do that, we prepared the three-dimensional

posture space sp in terms of the forward length β (quantized into four lengths: 0, 10, 35 60 [mm]) and the

turning angle α (quantized into three angles: -10, 0, 10 [deg]), which are the previous action command

and the leg side (left or right). Therefore, we have 24 kinds of postures. First, we have constructed the

action space of the feasible combinations of (α, β) and excluded the infeasible combinations which cause

collisions with its own body. Then, various combinations of actions are examined for stable walking

in the real robot. Fig. 6 shows the feasible actions (empty boxes) for each leg corresponding to the

previous actions. Owing to physical differences between the two legs, the constructed action space was

not symmetric, although theoretically it should be.

3.3 Reinforcement learning with visual information

Fig. 7 shows an overview of the whole system, which consists of two layers: adjusting walking based

on visual information and generating walking based on neural oscillators. The state space consists of

the visual information sv and the robot posture sp, and adjusted action a is learned by a dynamic

programming (DP) method based on the rhythmic walking parameters (α，β). For the ball shooting

task, sv consists of ball substates and goal substates, which are quantized as shown in Fig. 8. We add

two more substates, that is, “the ball is missing” and “the goal is missing” because they are necessary

to recover from loosing sight of the ball or goal.
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Figure 6: Experimental result of action rule
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Figure 7: The biped walking system with visual perception
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Figure 8: The state space of ball and goal

The learning module consists of a planner that determines an action a based on the current state

s, a state transition model that estimates the state transition probability Pa
ss′ through the interactions,

and a reward model (see Fig. 9). Based on DP, the action value function Q(s, a) is updated and the

learning stops when there are no more changes in the summation of action values.

Q(s, a) =
∑

s′
Pa

ss′ [Rs + γ max
a′

Q(s′, a′)], (12)

where Rs denotes the expected reward at the state s.

Dynamic
Programming

update policy
value function

Planner

State

Policy value function

Behavior strategy

State transition
model Reward model

Action

Model

update state transition model

Figure 9: The learning module

4 EXPERIMENTS

4.1 A robot platform and environment set-up

We use a humanoid platform HOAP-1 by Fujitsu Automation Ltd. [8] attaching a CCD camera with a

fish-eye lens at the head. Figs. 10 and 11 show a picture and a system configuration, respectively. The

height and the weight are about 480 mm and 6 kg, and each leg has six degrees-of-freedom and each

arm has four. Joint encoders have high resolution of 0.001 [deg/pulse] and reaction force sensors (FSRs)

are attached to the soles. Color image processing to detect an orange ball and a blue goal is performed

on the CPU (Pentium III 800 MHz) under RT-Linux. Fig. 12 shows an on-board image.
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Figure 10: HOAP-1

H8 micro 
computer

Fish-eye lens
CCD camera

PC
(pentium3 800MHz)

Motor

Motor
Driver

Encoder
OS:RT-Linux

USB

FSR sensor

Figure 11: Overview of robot system

Figure 12: Robot’s view (CCD camera image through fish-lens)
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The experimental set-up is shown in Fig. 13 where the initial robot position is inside the circle whose

center and radius are the ball position and 1000 mm, respectively, and the initial ball position is located

less than 1500 mm from the goal whose width is 1800 mm and height is 900 mm. The task is to take a

position just before the ball so that the robot can shoot the ball into the goal. Each episode ends when

the robot succeeds in getting such positions or fails (touches the ball or the pre-specified time period

expires).

Robot

Field

Ball

Goal

1800
900

1500

1000

Figure 13: Experimental environment

4.2 Experimental results

One of the most serious issues in applying the reinforcement learning method to real robot tasks is

how to accelerate the learning process. Instead of using Q-learning that is most typically used in

many applications, we use a DP approach based on the state transition model Pa
ss′ , which is obtained

separately from the learning behavior. Furthermore, we give the instructions to start up the learning:

during the first 50 episodes (about half an hour), the human instructor avoids useless exploration by

directly specifying the action command to the learner about 10 times per episode. After that, the learner

experienced about 1500 episodes. Owing to the state transition model and initial instructions, learning

converged in 15 hours, and the robot learned to get to the right position from any initial positions inside

the half field.

Fig. 14 shows the learned behaviors from various initial positions. In Figs. 14 (a)-(e), the robot can

capture the image including both the ball and the goal from the initial position while in Fig. 14 (f) the

robot cannot see the ball or the goal from the initial position.

5 DISCUSSION

This study shows the possibilities for humanoid to correlate its walking parameters and on-board visual

information through its experiences based on the so-called model-free approach which does not need

very precise model parameters that are usually necessary for the model-based approach.
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(a) Result 1 (b) Result 2 (c) Result 3

(d) Result 4 (e) Result 5 (f) Result 6

Figure 14: Experimental results

In our approach, motion commands are directly correlated with camera image without the com-

plicated calibration process. It enables to evaluate the motion commands from the viewpoint of the

achievement of the task.

This sort of approach has been already studied in wheel robots [1]. It is necessary to keep walking

stabilization to apply reinforcement learning to humanoid robot. There are two points to realize stable

walking in this study. The first point is keeping the walking trajectory continuous when walking param-

eters are changed. To do that, the planned trajectory before the change is modified so that the effects

on walking can be as little as possible. The second is the action rules described in Fig. 6. These rules

impose constraints on the selection of action parameters. For example, a robot cannot select left turn

command with long step length just after right turn command in the previous step.

There is still much room for improvement in this study as a model-free approach. One of the

problems is learning time. In our experiments, although 1500 episodes are examined and convergence

is conducted with the state transition probability acquired through those episodes, learning results are

not completely optimal. For example, the selected step length is not maximum limit at the place where

a robot is far from the goal place. Learning shows good convergence when the experimental setting is

simplified: approach to the ball on a straight line. When a robot is far from the goal, the maximum

step length is selected. This may be because the number of the states and actions in this simplified

experiment is much smaller than that in the experiment of approaching to a ball from the various
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positions. Therefore, learning acceleration in the complicated environment is one of our future works.

6 CONCLUSION

Vision-based humanoid behavior was generated by reinforcement learning with rhythmic walking pa-

rameters. Since the humanoid generally has many DoFs, it is very hard to control all of them. Instead

of using these DoFs in the action space, we adopted rhythmic walking parameters, which drastically

reduces the search space and, therefore, real robot learning was possible in a reasonable amount of time.

In this study, the designer specified the state space consisting of visual features and robot postures.

State space construction by learning is an issue for future exploration.
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APPENDIX: Planning the reference trajectory around the pitch

axis
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Figure 15: Joint angles and the reference trajectory of the foot
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The position of the foot determines the reference trajectories of joints 3, 4 and 5. Let x and z be the

position of the foot in the plane XZ which is perpendicular to the pitch axis. The reference trajectory

of the foot is given by

xF =
β

2
cos(φF ), (13)

zF = −H + h sin(φF ), (14)

xS = −β

2
cos(φS), (15)

zS = −H, (16)

(17)

where (xF , zF ) and (xS , zS) are the positions of the foot in the swing and support phase, respectively,

H is the length from the ground to the joint 3, β is the step length, and h is the maximum height of

the foot from the ground (Fig. 15). When the position of the foot is determined, the angle of each joint

to be realized is calculated by the inverse kinematics as follows,

θ3 =
π

2
+ atan2(z, x)− atan2(k, x2 + z2 + L2

1 − L2
2), (18)

θ4 = atan2(k, x2 + z2 − L2
1 − L2

2), (19)

θ5 = −(θ3 + θ4), (20)

where k is given by the following equation,

k =
√

(x2 + z2 + L2
1 + L2

2)2 − 2{(x2 + z2)2 + L4
1 + L4

2}. (21)

In this research, the value of each parameter is set as follows: H = 185 [mm], h = 8 [mm], W = 13 [deg],

L1 = 100 [mm] and L2 = 100 [mm].
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