
Modular Learning System and Scheduling for
Behavior Acquisition in Multi-Agent

Environment

Yasutake Takahashi1, Kazuhiro Edazawa2, and Minoru Asada1

1 Emergent Robotics Area, Dept. of Adaptive Machine Systems, Graduate School of
Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan,

{yasutake,asada}@ams.eng.osaka-u.ac.jp,
2 eda@er.ams.eng.osaka-u.ac.jp

Abstract. The existing reinforcement learning approaches have been
suffering from the policy alternation of others in multiagent dynamic
environments such as RoboCup competitions since other agent behav-
iors may cause sudden changes of state transition probabilities of which
constancy is necessary for the learning to converge. A modular learn-
ing approach would be able to solve this problem if a learning agent
can assign each module to one situation in which the module can re-
gard the state transition probabilities as constant. This paper presents a
method of modular learning in a multiagent environment, by which the
learning agent can adapt its behaviors to the situations as results of the
other agent’s behaviors. Scheduling for learning is introduced to avoid
the complexity in autonomous situation assignment.

1 Introduction

There have been an increasing number of work to robot behavior acquisition
based on reinforcement learning methods [1, 2]. The conventional approaches
need an assumption that the environment is almost stationary or changing slowly
so that the learning agent can regard the state transition probabilities as con-
stant during its learning. Therefore, it seems difficult to apply the reinforcement
learning method to a multiagent system because a policy alteration of other
agents may occur, which dynamically changes the state transition probabilities
from the viewpoint of the learning agent. RoboCup provides such a typical sit-
uation, that is, a highly dynamic, hostile environment, in which an agent has to
obtain purposive behaviors.

There are a number of studies on reinforcement learning systems in a multia-
gent environment. Asada et al. [3] proposed a method which estimates the state
vectors representing the relationship between the learner’s behavior and those
of other agents in the environment using a technique of system identification,
then reinforcement learning based on the estimated state vectors is applied to
obtain a cooperative behavior. However, this method requires a global learning
schedule in which only one agent is specified as a learner and the rest of agents

2 Yasutake Takahashi et al.

have a fixed policies. Therefore, the method cannot handle the alternation of
the opponents policies. This problem happens because one learning module can
maintain only one policy. A modular learning approach would provide one so-
lution to this problem. If we can assign multiple learning modules to different
situations in each of which module can regard the state transition probabilities
as constant, then the system could show a reasonable performance.

Jacobs and Jordan [4] proposed the mixture of experts, in which a set of
the expert modules learn and the gating system weights the output of the each
expert module for the final system output. This idea is very general and has
wide applications. Singh [5, 6] has proposed compositional Q-learning in which
an agent learns multiple sequential decision tasks with a number of learning mod-
ules. Each module learns its own elemental task while the system has a gating
module which learns to select one of the elemental task modules. However, there
are no such measure to identify the situation that the agent can switch modules
corresponding to the change of the situation. Tani and Nolfi [7, 8] extended the
idea to mixture of recurrent neural network and introduced it to predict sensory
flow pattern under a navigation task. Their scheme, however, doesn’t have any
control learning structure, which makes it difficult to acquire a purposive behav-
ior by itself. Doya et al. [9] have proposed MOdular Selection and Identification
for Control (MOSAIC), which is a modular reinforcement learning architecture
for non-linear, non-stationary control tasks. Their idea was applied to relatively
simple tasks/dynamic environment, however, it is uncertain that it is possible to
assign modules automatically in the multi-agent system that has highly dynamic
ones.

We adopt the basic idea of the mixture of experts into an architecture of
behavior acquisition in the multi-agent environment. In this paper, we propose
a method by which multiple modules are assigned to different situations and
learn purposive behaviors for the specified situations which are expected as the
result of other agent’s behavior under different policies. Takahashi et al. [10]
have shown preliminary experimental results under same domain, however, the
learning modules were assigned by the human designer. In this paper, schedul-
ing for learning is introduced to avoid the complexity in autonomous situation
assignment.

2 A Basic Idea and An Assumption

The basic idea is that the learning agent could assign one behavior learning
module to each situation which is caused by the other agents and the learning
module would acquire a purposive behavior under the situation if the agent can
distinguish a number of situations in which the state transition probabilities are
constant. We introduce a modular learning approach to realize this idea. A mod-
ule consists of learning component that models the world and an execution-time
planning component. The whole system performs these procedures simultane-
ously.

– find a model which represents the best estimation among the modules,

Lecture Notes in Computer Science 3

– update the model, and
– calculate action values to accomplish a given task based on dynamic pro-

gramming (DP).

As a experimental task, we prepare a case of ball passing behavior without
interception by the opponent player (Figs. 3,5). In the environment there are
a learning agent (passer), a ball, an opponent, and two teammates (receivers).
The problem here is to find the model which can most accurately describe the
opponent’s behavior from the viewpoint of the learning agent and to execute
the policy which is calculated under the estimated model. It may take a time
to distinguish the situation, therefore, we put an assumption : The opponent
continues the one of its policies during one trial and changes after the trial.

3 A Multi-Module Learning System

Predictor

Planner

Gate

Environments s a

s

Fig. 1. A multi-module learning system

Fig. 1 shows a basic architecture of the proposed system, that is, a multi-
module reinforcement learning system. Each module has a forward model (pre-
dictor) which represents the state transition model, and a behavior learner (pol-
icy planner) which estimates the state-action value function based on the forward
model in a reinforcement learning manner. This idea of combination of a forward
model and a reinforcement learning system is similar to the H-DYNA architec-
ture [11] or MOSAIC [9]. The system selects one module which has the best
estimation of a state transition sequence by activating a gate signal correspond-
ing to a module while deactivating the gate signals of other modules, and the
selected module sends action commands based on its policy.

3.1 Predictor

Each learning module has its own state transition model. This model estimates
the state transition probability P̂a

ss′ for the triplet of state s, action a, and next

4 Yasutake Takahashi et al.

state s′:
P̂a

ss′ = Pr{st+1 = s′|st = s, at = a} (1)

Each module has a reward model R̂a
ss′ :

R̂a
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2)

We simply store all experiences (sequences of state-action-next state and reward)
to estimate these models.

3.2 Planner

Now we have the estimated state transition probabilities P̂a
ss′ and the expected

rewards R̂a
ss′ , then, an approximated state-action value function Q(s, a) for a

state action pair s and a is given by

Q(s, a) =
∑

s′
P̂a

ss′

[
R̂a

ss′ + γ max
a′

Q(s′, a′)
]

, (3)

where P̂a
ss′ and R̂a

ss′ are the state-transition probabilities and expected rewards,
respectively, and γ is discount rate.

3.3 Module Selection

The gating signal of the module becomes larger if the module does better state
transition prediction during a certain period, else it becomes smaller. We assume
that the module which does the best state transition prediction has the best
policy against the current situation because the planner of the module is based
on the model which describes the situation best. In our proposed architecture,
the gating signal is used for gating the action outputs from modules. We calculate
the gating signals gi of the module i as follows:

gi =
0∏

t=−T+1

eλpt
i

where pi is an occurrence probability of the state transition from the previous
(t − 1) state to the current (t) one according to the model i, and λ is a scaling
factor.

3.4 New Module Assignment

If all modules show worse prediction of state transition, that means all gating
signals gi of the modules become small, the system add one learning module and
feed data of sensory-motor sequence to this modules for a while.

Lecture Notes in Computer Science 5

4 Task and assumption

The task of the learning agent is to pass the ball to one of the teammates while
it avoids interception by the opponent. The game is like a three on one; there are
one opponent and other three players. The player nearest to the ball becomes to
a passer and passes the ball to one of the teammates while the opponent tries
to intercept it.

Fig. 2 shows a mobile robot we have designed and built. Fig. 3 shows the
simulator of our robots and the environment. The robot has an omni-directional
camera system. A simple color image processing is applied to detect the ball area
and an opponent one in the image in real-time (every 33ms). The left of Fig. 3
shows a situation in which the agent can encounter and the bottom right shows
the simulated image of the camera with the omni-directional mirror mounted
on the robot. The robot consists of an omni-directional vehicle of which motion
(any translation and rotation on the plane) can be controlled.

Fig. 2. A real robot Fig. 3. A simulation environment

The state space is constructed in terms of the centroid of the ball on the
image, the angle between the ball and the opponent, and the angles between
the ball and the teammates (see Fig. 4 (a) and (b)). We quantized the ball
position space 11 by 11 as shown in Fig. 4 (a) and the each angle into 8. As a
result, the number of state becomes 112 × 8× 8× 8 = 61952. The action space
is constructed in terms of desired three velocity values (xd, yd, wd) to be sent
to the motor controller (Fig. 4 (b)). Each value is quantized into three, then the
number of action is 33 = 27. The robot has a pinball like kick device, and it
automatically kicks the ball whenever the ball comes to the region to be kicked.
It tries to estimate the mapping from sensory information to appropriate motor
commands by the proposed method.

The initial positions of the ball, the passer, the opponent, and teammates
are shown in Figs. 5. The opponent has two kinds of behaviors; it defend the
left side, or right side. The passer agent has to estimate which direction the

6 Yasutake Takahashi et al.

opponent will defend and go to the position in order to kick the ball to the
direction the opponent does not defend. From a viewpoint of the multi-module
learning system, the passer agent will estimate which situation of the module
is going on, select the most appropriate module to behave. The passer agent
acquires a positive reward when it approach to the ball and kicks it to one of
the teammate dodging the opponent.

ball
ball

opponent

teammate1

teammate2

xd

yd

wd

(a) state variables (position) (b) state variables (angle) (c) action variables

Fig. 4. A state-action space

Passer
(Learner)

Defence teammate

teammate

Fig. 5. Task : 3 on 1

L.M.0

L.M.1 L.M.2

L.M.n

...

pass

block

L.M.0

L.M.1 L.M.2

L.M.n

...

block
pass

(a) right block (b) left block

Fig. 6. Module switching

4.1 Learning Scheduling

We prepare a learning schedule composed of three stage to show its validity. The
opponent fixes its defending policy as right side block at the first stage. After
250 trials, the opponent changes the policy to block the left side at the second
stage and continues this for another 250 trials. Then, the opponent changes the
defending policy randomly after one trial.

Lecture Notes in Computer Science 7

4.2 Simulation Result

We have applied the method to a learning agent and compared it with only
one learning module. We have also compared the performances between the
methods with and without the learning scheduling. Fig. 7 shows the success
rates of those during the learning. The success indicates that the learning agent
successfully kick the ball without interception by the opponent. The success
rate indicates the number of successes in 50 trials. The multi-module system
with scheduling shows better performance than the one-module system. The
“mono. module” in the figure indicates “monolithic module” system and it tries
to acquire a behavior for both policies of the opponent. The monolithic module
with scheduling means that we applied learning scheduling mentioned in 4.1
even though the system has only one learning module. The performance of this
system is similar with multi-module system until the end of first stage (250
trials), however, it goes down at the second stage because the obtained policy
is biased against the experiences at the fist stage and cannot follow the policy
change of the opponent. Since the opponent takes one of the policies at random
at the third stage, the learning agent obtains about 50% of success rate. “without
scheduling” means that we do not applied learning scheduling and the opponent
changes its policy at random from the start. Somehow the performance of the
monolithic module system without learning scheduling is getting worse after the
200 trials. The multi-module system without learning schedule shows the worst
performance in our experiments. This result indicates that it is very difficult to
recognize the situation at the early stage of the learning because the modules
has too few experiences to evaluate their fitness, then the system tends to select
the module without any consistency. As a result, the system cannot acquires any
valid policies at all.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

multi module
(scheduling)

multi module
(without scheduling)

mono. module
(without scheduling)

mono. module
(scheduling)

R block L block R block and L block

R block and L block

scheduling

without
scheduling

s
u

c
c
e
s
s
 r

a
te

trials

Fig. 7. Success rate during the learning

8 Yasutake Takahashi et al.

5 Conclusion and Future Work

In this paper, we proposed a method by which multiple modules are assigned to
different situations which are caused by the alternation of the other agent policy
and learn purposive behaviors for the specified situations as consequences of the
other agent’s behaviors. We have shown results of a simple soccer situation and
the importance of the learning scheduling.

References

1. M. Asada, S. Noda, S. Tawaratumida, and K. Hosoda. Purposive behavior acqui-
sition for a real robot by vision-based reinforcement learning. Machine Learning,
23:279–303, 1996.

2. Jonalthan H. Connell and Sridhar Mahadevan. ROBOT LEARNING. Kluwer
Academic Publishers, 1993.

3. M. Asada, E. Uchibe, and K. Hosoda. Cooperative behavior acquisition for mobile
robots in dynamically changing real worlds via vision-based reinforcement learning
and development. Artificial Intelligence, 110:275–292, 1999.

4. R. Jacobs, M. Jordan, Nowlan S, and G. Hinton. Adaptive mixture of local expo-
erts. Neural Computation, 3:79–87, 1991.

5. Satinder Pal Singh. Transfer of learning by composing solutions of elemental se-
quential tasks. Machine Learning, 8:323–339, 1992.

6. Satinder P. Singh. The effeicient learnig of multiple task sequences. In Neural
Information Processing Systems 4, pages 251–258, 1992.

7. Jun Tani and Stefano Nolfi. Self-organization of modules and their hierarchy in
robot learning problems: A dynamical systems approach. Technical report, Tech-
nical Report: SCSL-TR-97-008, 1997.

8. J. Tani and S. Nolfi. Self-organization of modules and their hierarchy in robot
learning problems: A dynamical systems approach. Technical report, Sony CSL
Technical Report, SCSL-TR-97-008, 1997.

9. Kenji Doya, Kazuyuki Samejima, Ken ichi Katagiri, and Mitsuo Kawato. Multi-
ple model-based reinforcement learning. Technical report, Kawato Dynamic Brain
Project Technical Report, KDB-TR-08, Japan Science and Technology Corpora-
tion, June 2000.

10. Yasutake Takahashi, Kazuhiro Edazawa, and Minoru Asada. Multi-module learn-
ing system for behavior acquisition in multi-agent environment. In Proceedings
of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages CD–ROM 927–931, October 2002.

11. Satinder P. Singh. Reinforcement learning with a hierarchy of abstract models. In
National Conference on Artificial Intelligence, pages 202–207, 1992.

