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Abstract

This paper presents a series of the studies of multi-
layered learning system for vision-based behavior ac-
quisition of a real mobile robot. The work of this sys-
tem aims at building an autonomous robot which is able
to develop its knowledge and behaviors from low level
to higher one through the interaction with the environ-
ment in its life. The system creates leaning modules
with small limited resources, acquires purposive behav-
iors with compact state spaces, and abstracts states and
actions with the learned modules. To show the valid-
ity of the proposed methods, we apply them to simple
soccer situations in the context of RoboCup (Asadaet
al. 1999) with real robots, and show the experimental
results.

Introduction
One of the main concern about autonomous robots is how
to implement a system with learning capability to acquire
both varieties of knowledge and behaviors through the inter-
action between the robot and the environment during its life
time. There have been a lot of work on different learning ap-
proaches for robots to acquire behaviors based on the meth-
ods such as reinforcement learning, genetic algorithms, and
so on. Especially, reinforcement learning has recently been
receiving increased attention as a method for behavior learn-
ing with little or no a priori knowledge and higher capability
of reactive and adaptive behaviors. However, simple and
straightforward application of reinforcement learning meth-
ods to real robot tasks is considerably difficult due to its al-
most endless exploration of which time is easily scaled up
exponentially with the size of the state/action spaces, that
seems almost impossible from a practical viewpoint.

One of the potential solutions might be application of so-
called “mixture of experts” proposed by Jacobs and Jordan
(Jacobset al. 1991), in which a set of expert modules learn
and one gating system weights the output of the each expert
module for the final system output. This idea is very general
and has a wide range of applications. However, we have to
consider the following two issues to apply it to the real robot
tasks:
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• Task decomposition: how to find a set of simple behav-
iors and assign each of them to a learning module or an
expert in order to achieve the given initial task. Usually,
human designer carefully decompose the long time-scale
task into a sequence of simple behaviors such that the
one short time-scale subtask can be accomplished by one
learning module.

• Abstraction of state and/or action spaces for scaling up:
the original “mixture of experts” consists of experts and
and gate for expert selection. Therefore, no more abstrac-
tion beyond the gating module. In order to cope with com-
plicated real robot tasks, abstraction of the state and/or
action spaces is necessary.

Connell and Mahadevan (Connell & Mahadevan 1993)
decomposed the whole behavior into sub-behaviors each of
which can be independently learned. Morimoto and Doya
(Morimoto & Doya 1998) applied a hierarchical reinforce-
ment learning method by which an appropriate sequence of
subgoals for the task is learned in the upper level while be-
haviors to achieve the subgoals are acquired in the lower
level. Hasegawa and Fukuda (Hasegawa & Fukuda 1999;
Hasegawa, Tanahashi, & Fukuda 2001) proposed a hier-
archical behavior controller, which consists of three types
of modules, behavior coordinator, behavior controller and
feedback controller, and applied it to a brachiation robot.
Kleiner et al. (Kleiner, Dietl, & Nebel 2002) proposed a
hierarchical learning system in which the modules at lower
layer acquires low level skills and the module at higher layer
coordinates them. However, in these proposed methods, the
task decomposition has been done by the designers very
carefully in advance, or the constructions of the state/action
spaces for higher layer modules are independent from the
learned behaviors of lower modules. As a result, it seems
difficult to abstract situations and behaviors based on the al-
ready acquired learning/control modules.

A basic idea to cope with the above two issues is that
any learning module has limited resource constraint, and this
constraint of the learning capability leads us to introduce a
multi-module and multi-layered learning system; one learn-
ing module has a compact state-action space and acquires a
simple map from the states to the actions, and a gating sys-
tem enables the robot to select one of the behavior modules
depending on the situation. More generally, the higher mod-



ule controls the lower modules depending on the situation.
The definition of this situation depends on the capability of
the lower modules because the gating module selects one of
the lower modules based on their acquired behaviors. From
the another viewpoint, the lower modules provide not only
the rational behaviors but also the abstracted situations for
the higher module; how feasible the module is, how close
to its subgoal, and so on. It is reasonable to utilize such in-
formation in order to construct state/action spaces of higher
modules from already abstracted situations and behaviors
of lower ones. Thus, the hierarchical structure can be con-
structed with not only experts and gating module but more
layers with multiple homogeneous learning modules.

In this paper, we show a series of studies towards the
construction of such hierarchical learning structure develop-
mentally. The first one (Takahashi & Asada 2000) is auto-
matic construction of hierarchical structure with purely ho-
mogeneous learning modules. Since the resource (and there-
fore the capability, too) of one learning module is limited,
the initially given task is automatically decomposed into a
set of small subtasks each of which corresponds to one of
the small learning modules, and also the upper layer is re-
cursively generated to cover the whole task. In this case, the
all learning modules in the one layer share the same state
and action spaces although some modules need the part of
them. Then, the second work (Takahashi & Asada 2001)
and third one (Takahashi & Asada 2003) focused on the state
and action space decomposition according to the subtasks to
make the learning much more efficient. Further, the forth
one (Takahashi, Hikita, & Asada 2003) realized unsuper-
vised decomposition of a long time-scale task by finding the
compact state spaces, which consequently leads the subtask
decomposition. We have applied these methods to simple
soccer situations in the context of RoboCup (Asadaet al.
1999) with real robots, and show the experimental results.

Multi-Layered Learning System
The architecture of the multi-layered reinforcement learning
system is shown in Figure 1, in which (a) and (b) indicate
a hierarchical architecture with two levels and an individ-
ual learning module embedded in the layers, respectively.
Each module has its own goal state in its state space, and it
learns the behavior to reach the goal, or maximize the sum
of the discounted reward received over time based on the
Q-learning method. The state and the action are constructed
using sensory information and motor command, respectively
at the bottom level. The input and output to/from the higher
level are the goal state activation and the behavior activa-
tion, respectively, as shown in Figure 1(b). The goal state
activationg is a normalized state value1, andg = 1 when
the situation is the goal state. When the module receives
the behavior activation from the higher modules, it calcu-
lates the optimal policy for its own goal, and sends action
commands to the lower module. The action command at the
bottom level is translated to an actual motor command, then

1The state value function estimates the sum of the discounted
reward received over time when the robot takes the optimal policy,
and is obtained byQ learning.
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Figure 1: A hierarchical learning architecture

the robot takes the action in the environment.

Figure 2: A sketch of a state value function

One basic idea is to use the goal state activationsg of the
lower modules as the representation of the situation for the
higher modules. Figure 2 shows a sketch of a state value
function where a robot receives a positive reward one when
it reach to a specified goal. The state value function can be
regarded as closeness to the goal of the module. The states
of the higher modules are constructed using the patterns of
the goal state activations of the lower modules. In contrast,
the actions of the higher level modules are constructed using
the behavior activations to the lower modules.

Behavior Acquisition on Multi-Layered
System (Takahashi & Asada 2000)

An Experiment System
Figure 3 shows a picture of the environment where a mo-
bile robot we designed and built, a ball, and a goal are in-



Figure 3: A mobile robot, a ball and a goal

cluded. It has two TV cameras: one has a wide-angle lens,
and the other a omni-directional mirror. The driving mech-
anism is PWS (Powered Wheels Steering) system, and the
action space is constructed in terms of two torque values to
be sent to two motors that drive two wheels.

Architecture and Results

In this experiment, the robot receives the information of only
one goal for simplicity. The state space at the bottom layer
is constructed in terms of the centroids of goal region on the
images of the two cameras and is tessellated both into 9 by
9 grids each. The action space is constructed in terms of two
torque values to be sent to two motors corresponding to two
wheels and is tessellated into 3 by 3 grids. Consequently, the
numbers of states and actions are 162(9×9×2) and 9(3×3),
respectively. The state and action spaces at the upper layer
are constructed by the learning modules at the lower layer
which are automatically assigned.
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Figure 4: A hierarchical architecture on a monolithic state
space
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Figure 5: The distribution of learning modules at bottom
layer on the normal camera image
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Figure 6: The distribution of learning modules at bottom
layer on the omni-directional camera image

The experiment is constructed with two stages: the learn-
ing stage and the task execution one based on the learned
result. First of all, the robot moves at random in the environ-
ment for about two hours. The system learns and constructs
the four layers and one learning module is assigned at the
top layer (Figure 4). We call each layer from the bottom,
“bottom”, “middle”, “upper”, and “top” layers. In this ex-
periment, the system assigned 40 learning modules at the
bottom layer, 15 modules at the middle layer, and 4 modules
at the upper layer. Figures 5 and 6 show the distributions
of goal state activations of learning modules at the bottom
layer in the state spaces of wide-angle camera image and
omni-directional mirror image, respectively. Thex and y
axes indicate the centroid of goal region on the images. The
numbers in the figures indicate the corresponding learning
module numbers. The figures show that each learning mod-
ule is automatically assigned on the state space uniformly.
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Figure 7: A rough sketch of the state transition on the multi-
layer learning system

Figure 7 shows a rough sketch of the state transition and
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the commands to the lower layer on the multi-layer learn-
ing system during navigation task. The robot was initially
located far from the goal, and faced the opposite direction
to it. The target position was just in front of the goal. The
circles in the figure indicate the learning modules and their
numbers. The empty up arrows (broken lines) indicate that
the upper learning module recognizes the state which cor-
responds to the lower module as the goal state. The small
solid arrows indicate the state transition while the robot ac-
complished the task. The large down arrows indicate that
the upper learning module sends the behavior activation to
the lower learning module.

State Space Decomposition and Integration
(Takahashi & Asada 2001)

The system mentioned in the previous section dealt with a
whole state space from the lower layer to the higher one.
Therefore, it cannot handle the change of the state variables
because the system supposes that all tasks can be defined on
the state space at the bottom level. Further, it is easily caught
by a curse of dimension if number of the state variables is
large.

Here, we introduce an idea that the system constructs a
whole state space with several decomposed state spaces. At
the bottom level, there are several decomposed state spaces
in which modules are assigned to acquire the low level be-
havior in the small state spaces. The modules at the higher
level manage the lower modules assigned to different state
spaces. In this paper, we define the term “layer” as a
group of modules sharing the same state space, and the term
“level” as a class in the hierarchical structure. There might
be several layers at one level (see Figure 8).

Figure 8 shows an example hierarchical structure. At the
lowest level, there are four learning layers, and each of them
deals with its own logical sensory space (ball positions on
the perspective camera image and omni one, and goal po-
sition on both images). At the second level, there are four
learning layers. The “ball pers.×goal pers.” layer deals
with lower modules of “ball pers.” and “goal pers.” lay-
ers. The arrows in the figure indicate the flows from the goal
state activations to the state vectors. The arrows from the
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Figure 9: A sequence of the behavior activation of learning
modules and the commands to the lower layer modules

action vectors to behavior activations are eliminated. At the
third level, the system has three learning layers, again.

After the learning stage, we let our robot do a couple of
tasks, for example, chasing a ball, moving in front of the
goal, and shooting a ball into the goal, using this multi-layer
learning structure. When the robot behaves chasing a ball,
the system uses “ball pers.” and “ball omni” layers at 1st
level, “ball pers.+omni” at 2nd level, and “ball pers.+omni”
at 3nd level. When the robot behaves moving in front of
the goal, the system uses “goal pers.” and “goal omni” lay-
ers at 1st level, “goal pers.+omni” at 2nd level, and “goal
pers.+omni” at 3nd level. And when the robot shoots a ball
into a goal, the system uses all 4 layers at the 1st level, all
3 layers at 2nd level, “ball x goal” layer at the 3rd level,
and the layer at the 4th level. All layers at the 1st level and
“ball pers.+omni” and “goal pers.+omni” layers are reused
among the three behaviors. In the case of the shooting be-
havior, the target situation is given by reading the sensor in-
formation when the robot pushes the ball into the goal; the
robot captures the ball and goal at center bottom in the per-
spective camera image. As an initial position, the robot is
located far from the goal, faced opposite direction to it. The
ball was located between the robot and the goal.

Figure 9 shows a sequence of the behavior activation of
learning modules and the commands to the lower layer mod-
ules. The down arrows indicate that the higher learning
modules fire the behavior activations of the lower learning
modules.

Action Space Decomposition and
Coordination (Takahashi & Asada 2003)

Figure 10 shows a picture and a top view of another soccer
robot for middle size league of RoboCup we designed and
built. The driving mechanism is same as the last one, and it
equips a pinball like kicking device in front of the body. If
one learning module has to manipulate all actuators simulta-
neously, the exploration space of action scales up exponen-
tially with the number of the actuators, and it is impractical
to apply a reinforcement learning system.
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Figure 10: A Robot : it has a PWS system vehicle, pin-
ball like kicking devices, and a small camera with a omni-
directional mirror

Fortunately, a complicated behavior which needs many
kinds of actuators might be often generally decomposed into
some simple behaviors each of which needs small number
of actuators. The basic idea of this decomposition is that
we can classify them based on aspects of the actuators. For
example, we may classify the actuators into navigation de-
vices and manipulators, then the some of behaviors depend
on the navigation devices tightly, not on the manipulators,
while the others depend on manipulators, not on the navi-
gation. The action space based on only navigation devices
seems to be enough for acquisition of the former behaviors,
while the action space based on manipulator would be suf-
ficient for the manipulation tasks. If we can assign learning
modules to both action spaces and integrate them at higher
layer, much smaller computational resources is needed and
the learning can be accelerated significantly.

Architecture and Results
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Figure 11: A hierarchical learning system for the behavior
of placing the ball in the center circle (task1)

We have implemented two kinds of hierarchical systems
to check if the basic idea can be realized. Each system has
been assigned a task (Figures 11 and 12). One is placing the
ball in the center circle (task 1), and the other is shooting the
ball into the goal (task2).

We have prepared the following subtasks for the vehicle:
“Chasing a ball”, “Looking at the goal in front”, “Reach-
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Figure 12: A hierarchical learning system for the behavior
of shooting the ball into the goal (task 2)

ing the center circle”, and “Reaching the goal”. We have
also prepared the following subtasks for the kicking device:
“Catching the ball”, “Kicking the ball”, and “Setting the
kicking device to the home position”. Then, the upper layer
modules integrates these lower ones. After the learner ac-
quired low level behaviors, it puts new learning modules at
higher layer as shown in Figures 11 and 12 and learn two
kinds of behaviors. We let our robot learn the behavior for
the task 1 (placing a blal in the center circle) first. The robot
acquired “Chasing a ball” and “Reaching the center circle”
behaviors for the vehicle, and “Catching the ball” and “Set-
ting the kicking device to the home position” behaviors for
the kicking device. Then the robot learned the behavior for
the task 2 (shooting the ball into the goal). It reused the be-
haviors of “Chasing a ball”, “Catching the ball”, and “Set-
ting the kicking device to the home position”, and learned
the other new behaviors. Figure 13 shows a sequence of
shooting a ball into the goal with the hierarchical learning
system (see also Figure 12).

Figure 13: A sequence of an acquired behavior (Shooting)



Task Decomposition based on
Self-Interpretation of Instructions by Coach

(Takahashi, Hikita, & Asada 2003)
When we develop a real robot which learns various behav-
iors in its life, it seems reasonable that a human instructs or
shows some example behaviors to the robot in order to ac-
celerate the learning before it starts to learn. We proposed
a behavior acquisition method based on hierarchical multi-
module leaning system with self-interpretation of coach in-
structions. The proposed method enables a robot to

1. decompose a long term task into a set of short term sub-
tasks,

2. select sensory information needed to accomplish the cur-
rent subtask,

3. acquire a basic behavior to each subtask, and

4. integrate the learned behaviors to a sequence of the be-
haviors to accomplish the given long term task.

Figure 14: Basic concept: A coach gives instructions to a
learner. The learner follows the instruction and find basic
behaviors by itself.

Figure 14 shows a rough sketch of the basic idea. There
are a learner, an opponent, and a coach in a simple soccer
situation. The coach hasa priori knowledge of tasks to be
played by the learner. The learner does not have any knowl-
edge on tasks but just follows the instructions. In Figure
14, the coach shows a instruction of shooting a ball into a
goal without collision to an opponent. After some instruc-
tions, the learner segments the whole task into a sequence
of subtasks, acquires a behavior for each subtask, finds the
purpose of the instructed task, and acquire a sequence of the
behaviors to accomplish the task by itself. When the coach
gives new instructions, the learner reuses the learning mod-
ules for familiar subtasks, generates new learning modules
for unfamiliar subtasks at lower level. The system generates
a new module for a sequence of behaviors of the whole in-
structed task at the upper level. The details are described in
(Takahashi, Hikita, & Asada 2003).

Experiments
Figure 15 (a) shows the mobile robot. The robot has an
omni-directional camera system. A simple color image pro-
cessing is applied to detect the ball area and an opponent one

(a) A real robot
and a ball

Opponent agent

Ball

Learning agent

(b) Top view of the
field

Figure 15: Real robot and environment

in the image in real-time (every 33ms). Figure 15 (b) shows
a situation with which the learning agent can encounter.

The robot receives instructions for the tasks in the order
as follows:

Task 1: chasing a ball

Task 2: shooting a ball into a goal without obstacles

Task 3: shooting a ball into a goal with an obstacle

Figures.16 (a), (b), and (c) show the one of the example
behaviors for each task. Figures17 show the constructed sys-
tems after the learning of each task. First of all, the coach
gives some instructions for the ball chasing task. The sys-
tem produce one module which acquired the behavior of ball
chasing. At the second stage, the coach gives some instruc-
tions for the shooting task. The learner produces another
module which has a policy of going around the ball until the
directions to the ball and the goal become same. At the last
stage, the coach gives some instructions for the shooting task
with obstacle avoidance. The learner produces another mod-
ule which acquired the behavior of going to the intersection
between the opponent and the goal avoiding the collision.
Figure18 shows a sequence of an experiment of real robots
for the task.

Conclusions and Future Works
We showed a series of approaches to the problem of decom-
posing the large state action space at the bottom level into
several subspaces and merging those subspaces at the higher
level. As future works, there are a number of issues to ex-
tend our current methods.

Interference between modulesOne module behavior
might have inference to another one which has different
actuators. For example, the action of a navigation module
will disturb the state transition from the view point of
the kicking device module; the catching behavior will be
success if the vehicle stays while it will fail if the vehicle
moves.

Self-assignment of modulesIt is still an important issue to
find a purposive behavior for each learning module auto-
matically. In the paper (Takahashi & Asada 2000), the
system distributes modules on the state space uniformly,
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Figure 16: Example behaviors for tasks

however, it is not so efficient. In the paper (Takahashi,
Hikita, & Asada 2003), the system decomposes the task
by itself, however, the method uses many heuristics and
needs instruction from a coach. In many cases, the de-
signers have to define the goal of each module by hand
based on their own experiences and insights.

Self-construction of hierarchy Another missing point in
the current method is that it does not have the mechanism
that constructs the learning layer by itself.
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