
Modular Learning Systems for Soccer Robot

Yasutake Takahashi and Minoru Asada

Graduate School of Engineering, Osaka University
Osaka, Japan

Abstract. This paper presents a series of the studies of modular learning system for vision-based behavior ac-
quisition of a soccer robot participating in middle size league of RoboCup (Asada, et al. 1999). Reinforcement
learning has recently been receiving increased attention as a method for behavior learning with little or no a pri-
ori knowledge and higher capability of reactive and adaptive behaviors. However, simple and straightforward
application of reinforcement learning methods to real robot tasks is considerably difficult due to its endless
exploration of which time is easily scaled up exponentially with the size of the state/action spaces, that seems
almost impossible from a practical viewpoint. Further, the existing reinforcement learning approaches have
been suffering from the policy alternation of others in multi-agent dynamic environments such as RoboCup
competitions since other agent behaviors may cause sudden changes of state transition probabilities of which
constancy is necessary for the learning to converge. In order to cope with the above two issues, we introduced
a multi-layered modular learning system. To show the validity of the proposed methods, we apply them to
simple soccer situations in the context of RoboCup with real robots, and show the experimental results.

Keywords: Reinforcement Learning, Multi-layered learning system, Multi-module learning system,
RoboCup

1 Introduction

There have been a lot of work on different learning approaches to acquisition of purposive behaviors of robots
based on the methods such as reinforcement learning, genetic algorithms, and so on. Especially, reinforcement
learning has recently been receiving increased attention as a method for behavior learning with little or no
a priori knowledge and higher capability of reactive and adaptive behaviors. However, simple and straight-
forward application of reinforcement learning methods to real robot tasks is considerably difficult due to its
endless exploration of which time is easily scaled up exponentially with the size of the state/action spaces, that
seems almost impossible from a practical viewpoint.

One of the potential solutions might be application of so-called “mixture of experts” proposed by Jacobs
and Jordan (Jacobs, et al. 1991), in which a set of expert modules learn and one gating system weights the
output of the each expert module for the final system output. This idea is very general and has a wide range of
applications. However, we have to consider the following two issues to apply it to the real robot tasks:

• Abstraction of state and/or action spaces for scaling up: the original “mixture of experts” consists of experts
and and gate for expert selection. Therefore, no more abstraction beyond the gating module. In order to
cope with complicated real robot tasks, abstraction of the state and/or action spaces is necessary.

• Adaptation of other agents’ policy alternation: the policy alternation of others in multi-agent dynamic
environments dynamically changes the state transition probabilities from the viewpoint of the learning
agent and a monolithic learning module cannot handle it. A modular learning approach would provide one
solution to this problem.

A basic idea to cope with the first issue is that the learning modules generate not only the rational behav-
iors but also inform the abstracted situations to the higher module; how feasible the module is, how close to
its subgoal, and so on. It is reasonable to utilize such information in order to construct state/action spaces of
the higher modules from already abstracted situations and behaviors of the lower ones. Thus, the hierarchical
structure can be constructed with not only experts and gating module but more layers with multiple homo-
geneous learning modules. The idea to handle the second issue is that the learning agent could assign one
behavior learning module to each situation which is caused by the other agent’s policy. The multiple mod-
ules are assigned to different situations and learn purposive behaviors for the specified situations which are
regarded as the consequence of other agent’s behavior under different policies. In this paper, we show a series
of studies of multi-layered modular learning system for vision-based behavior acquisition of a soccer robot
participating in middle size league of RoboCup (Asada et al. 1999).

2 Behavior Acquisition based on Multi-Layered Learning System

Module
Learning

State Action

Goal State Activation Behavior Activation

Behavior ActivationGoal State Activation

Module
Learning

Module
Learning

Module
Learning

State Action State Action

Learning
Module

Sensor Motor Sensor Motor

Environment

Assignment
Task

Task
Assignment

narrower scope

wider area

(a) A whole system

Reward

State Action

Q-Learning

instruction from higher level
to execute learned policy

Behavior Activation :

Goal State Activation :
"closeness to its own goal state"
normalized state value

Activation
BehaviorGoal State

Activation

(b) A behavior learning mod-
ule

Figure 1. A hierarchical learning architecture

Figure 2. A sketch of a state
value function

The architecture of the multi-layered reinforcement learning system is shown in Figure 1, in which (a) and
(b) indicate a hierarchical architecture with two levels and an individual learning module embedded in the
layers, respectively. Each module has its own goal state in its state space, and it learns the behavior to reach
the goal, or maximize the sum of the discounted reward received over time based onQ-learning. The state
and action spaces are constructed using sensory information and motor command, respectively at the bottom
level. The input and output to/from the higher level are the goal state activation and the behavior activation,
respectively, as shown in Figure 1(b). The goal state activationg is a normalized state value, andg = 1
when the situation is the goal state. When a module receives a behavior activation from the higher modules,
it calculates the optimal policy for its own goal, and sends action commands to the lower module. The action
command at the bottom level is translated to an actual motor command, then the robot takes the action in the
environment.

One basic idea is to use the goal state activationsg of the lower modules as the representation of the
situation for the higher modules. Figure 2 shows a sketch of a state value function where a robot receives a
positive reward when it reach to a specified goal. The state value function can be regarded as closeness to
the goal of the module. The states of the higher modules are constructed using the patterns of the goal state
activations of the lower modules. In contrast, the actions of the higher level modules are constructed using the
behavior activations to the lower modules.

Figure 3. A mobile robot, a ball and a goal

Figure 3 shows a picture of the environment where a mobile robot we designed and built, a ball, and a goal
are included. It has two TV cameras: one has a wide-angle lens, and the other a omni-directional mirror. The
driving mechanism is PWS (Powered Wheels Steering) system, and the action space is constructed in terms of
two torque values to be sent to two motors that drive two wheels.

In (Takahashi & Asada 2000), the robot receives the information of only one goal for simplicity. The state
space at the bottom layer is constructed in terms of the centroids of goal region on the images of the two
cameras. The action space is constructed in terms of two torque values to be sent to two motors corresponding
to two wheels. The state and action spaces at the upper layer are constructed by the learning modules at the
lower layer which are automatically assigned. The experiment is constructed with two stages: the learning
stage and the task execution one based on the learned result. First of all, the robot moves at random in the
environment for about two hours. The system learns and constructs the four layers and one learning module

Goal State Activation Behavior Activation

Learning
Module

Learning
Module

Learning
Module

Action

Learning
Module

Action

Goal State
Activation

Behavior
Activation

Learning
Module

Learning
Module

State

State

Goal State Activation Behavior Activation

Learning
Module

Learning
Module

Learning
Module

State Action

State Action

Goal image
omni cameranormal vision

turn
backward

forward

Motor command

turn
left right

Goal image

y
x

y
x

Figure 4. A hierarchical architecture on a
monolithic state space

y
x

Goal image
perspective camera

x
y

Goal image
omni camera

y
x

perspective camera
Ball image

x
y

Ball image
omni camera

LM LM LM LM LM LM LM LM LM

LM LM LMLM LM LMLM LM

LM LM LM

LMLM LM LMLM

LM LMLM

LM LMLM LM

LMLM

level
1st

level
2nd

level
3rd

4th
level

ball omni ball pers. goal pers. goal omni

ball pers+omni ball pers. x goal pers.

ball pers.+omni ball x goal

ball x goal

goa pers.+omni

goal pers.+omni

Figure 5. A hierarchy architecture on decom-
posed state spaces

is assigned at the top layer (Figure 4). We call each layer from the bottom, “bottom”, “middle”, “upper”, and
“top” layers. In this experiment, the system assigned 40 learning modules at the bottom layer, 15 modules at
the middle layer, and 4 modules at the upper layer. Figure 6 shows a rough sketch of the state transition and
the commands to the lower layer on the multi-layered learning system during navigation task. The robot was
initially located far from the goal, and faced the opposite direction to it. The target position was just in front
of the goal. The circles in the figure indicate the learning modules and their numbers. The empty up arrows
(broken lines) indicate that the upper learning module recognizes the state which corresponds to the lower
module as the goal state. The small solid arrows indicate the state transition while the robot accomplished the
task. The large down arrows indicate that the upper learning module sends the behavior activation to the lower
learning module.

The system mentioned above dealt with a whole state space from the lower layer to the higher one. There-
fore, it cannot handle the change of the state variables because the system supposes that all tasks can be defined
on the state space at the bottom level. Further, it is easily caught by a curse of dimension if number of the state
variables is large. In (Takahashi & Asada 2001), we introduce an idea that the system constructs a whole state
space with several decomposed state spaces. At the bottom level, there are several decomposed state spaces
in which modules are assigned to acquire the low level behavior in the small state spaces. The modules at the
higher level manage the lower modules assigned to different state spaces. In this paper, we define the term
“layer” as a group of modules sharing the same state space, and the term “level” as a class in the hierarchical
structure. Figure 5 shows an example hierarchical structure. At the lowest level, there are four learning layers,
and each of them deals with its own logical sensory space (ball positions on the perspective camera image and
omni one, and goal position on both images). At the second level, there are four learning layers. The “ball
pers.×goal pers.” layer deals with lower modules of “ball pers.” and “goal pers.” layers. The arrows in the
figure indicate the flows from the goal state activations to the state vectors. The arrows from the action vectors
to behavior activations are eliminated. At the third level, the system has three learning layers, again.

After the learning stage, we let our robot do a couple of behaviors, for example, chasing a ball, moving in
front of the goal, and shooting a ball into the goal, using this multi-layer learning structure. When the robot
behaves chasing a ball, the system uses “ball pers.” and “ball omni” layers at first level, “ball pers.+omni” at
second level, and “ball pers.+omni” at third level. Also when the robot shoots a ball into a goal, the system
uses all four layers at the first level, all three layers at second level, “ball x goal” layer at the third level, and the
layer at the fourth level. All layers at the first level and “ball pers.+omni” and “goal pers.+omni” layers are
reused by these three behaviors. In the case of the shooting behavior, the target situation is given by reading the
sensor information when the robot pushes the ball into the goal; the robot captures the ball and goal at center
bottom in the perspective camera image. As an initial position, the robot is located far from the goal, faced
opposite direction to it. The ball was located between the robot and the goal. Figure 7 shows a sequence of
the behavior activation of learning modules and the commands to the lower layer modules. The down arrows
indicate that the higher learning modules fire the behavior activations of the lower learning modules.

10

0

4 25
45

15
27

13
30 9

26
7

41

19

16

1

9
15

6 11
7

16 Lowest
Layer

Middle
Layer

Upper
Layer

Figure 6. A rough sketch of the state transi-
tion on the multi-layer learning system

1st
level

2nd
level

3rd
level

99

10
1 1 0 0 0 0 1 0

111

ball
pers.

omni
ball
pers.
goal

goal
omni4 1

15 1 116 00 16 0 0 0 19 17 019
190

goal pers.xball pers.

pers. +omni

goal

pers. +omni
ball

ball x goal

0 0 0
0

0

0 0 00
0

1
0 1 1

1

0

0 50 100 150 200step

Figure 7. A sequence of the behavior activa-
tion of learning modules and the commands
to the lower layer modules

3 Modular Learning System for Multi-Agent System

The basic idea to cope with other agents’ policy alternation is that the learning agent could assign one behavior
learning module to each situation which is caused by the other agents and the learning module would acquire
a purposive behavior under the situation if the learning agent can distinguish a number of situations in which
the state transition probabilities are constant. We introduce a modular learning approach to realize this idea. A
module consists of a learning component that models the world and an execution-time planning component.
The whole system performs the following procedures simultaneously:

• find a model which represents the best estimation among the modules,
• update the model, and
• calculate action values to accomplish a given task based on dynamic programming.

As an experimental task, we prepare a case of ball passing behavior without interception by the opponent player
(Figures 10,12). In the environment there are a learning agent (passer), a ball, an opponent, and two teammates
(receivers). The problem here is to find the model which can most accurately describe the opponent’s behavior
from the viewpoint of the learning agent and to execute the policy which is calculated under the estimated
model.

Predictor

Planner

Gate

Environments s a

s

Figure 8. A multi-module learning system

Figure 8 shows a basic architecture of the proposed system, that is, a multi-module reinforcement learn-
ing system. Each module has a forward model (predictor) which represents the state transition model, and a
behavior learner (policy planner) which estimates the state-action value function based on the forward model
in a reinforcement learning manner. This idea of combination of a forward model and a reinforcement learn-
ing system is similar to the H-DYNA architecture (Singh 1992) or MOSAIC (Doya, et al. 2000). The system
selects one module which has the best estimation of a state transition sequence by activating a gate signal cor-
responding to a module while deactivating the gate signals of other modules, and the selected module sends
action commands based on its policy.

Each learning module has its own state transition model and a reward model. An approximated state-action
value function for a state action pair is calculated based on these models. The gating signal of the module
becomes larger if the module does better state transition prediction during a certain period, else it becomes
smaller. We assume that the module which does the best state transition prediction has the best policy against
the current situation because the planner of the module is based on the model which describes the situation

best. In our proposed architecture, the gating signal is used for gating the action outputs from modules. If all
modules show wrong prediction of state transition, that means all gating signals of the modules become small,
the system adds one learning module and feeds data of sensory-motor sequence to this modules for a while.

Figure 9 shows a mobile robot we have designed and built. Figure 10 shows the simulator of our robots
and the environment. The robot has an omni-directional camera system. A simple color image processing is
applied to the detection of the ball area and opponent ones in the image in real-time (every 33ms). The left of
Figure 10 shows a situation in which the agent can encounter and the bottom right shows the simulated image
of the camera with the omni-directional mirror mounted on the robot. The robot consists of an omni-directional
vehicle of which motion (any translation and rotation on the plane) can be controlled.

Figure 9. A real robot Figure 10. A simulation environment

The state space is constructed in terms of the centroid of the ball on the image, the angle between the ball
and the opponent, and the angles between the ball and the teammates (see Figures 11 (a) and (b)). The action
space is constructed in terms of desired three velocity values (xd, yd, wd) to be sent to the motor controller
(Figure 11 (c)). The robot has a pinball like kick device, and it automatically kicks the ball whenever the ball
comes to the region to be kicked. It tries to estimate the mapping from sensory information to appropriate
motor commands by the proposed method.

The initial positions of the ball, the passer, the opponent, and teammates are shown in Figure 12. The
opponent has two kinds of behaviors; it defend the left side, or right side. The passer agent has to estimate
which direction the opponent will defend and go to the position in order to kick the ball to the direction
the opponent does not defend. From a viewpoint of the multi-module learning system, the passer agent will
estimate which situation of the module is going on, select the most appropriate module to do. The passer
agent acquires a positive reward when it approach to the ball and kicks it to one of the teammate dodging the
opponent.

ball
ball

opponent

teammate1

teammate2

xd

yd

wd

(a) state variables (position) (b) state variables (angle) (c) action variables

Figure 11. A state-action space

Passer
(Learner)

Defence teammate

teammate

Figure 12. Task : 3 on 1

L.M.0

L.M.1 L.M.2

L.M.n

...

pass

block

L.M.0

L.M.1 L.M.2

L.M.n

...

block
pass

(a) right block (b) left block

Figure 13. Module switching 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

multi module
(scheduling)

multi module
(without scheduling)

mono. module
(without scheduling)

mono. module
(scheduling)

R block L block R block and L block

R block and L block

scheduling

without
scheduling

s
u

c
c
e
s
s
 r

a
te

trials

Figure 14. Success rate during the learning

We prepare a learning schedule composed of three stage to show its validity. The opponent fixes its defend-
ing policy as right side block at the first stage. After 250 trials, the opponent changes the policy to block the left
side at the second stage and continues this for another 250 trials. Then, the opponent changes the defending
policy randomly every trial.

We have applied the method to a learning agent and compared it with one module learning system. We
have also compared the performances between the methods with and without the learning schedule. Figure
14 shows the success rates of these methods during the learning. The success means that the learning agent
successfully pass the ball without interception by the opponent and the success rate indicates the rate of the
number of successes in the last 50 trials. The multi-module system with schedule shows better performance
than the one-module system. The monolithic module system (“mono. module” in the figure) tries to acquire a
single behavior for both policies of the opponent (left and right defending) with only one learning module. The
“without scheduling” means that we do not applied learning schedule and the opponent changes its policy at
random from the beginning. The multi-module system without learning schedule shows the worst performance
in our experiments. This result indicates that it is very difficult to recognize the situation at the early stage of
the learning because the modules has too few experiences to evaluate their fitness, then the system tends to
select the module without any consistency. As a result, the system cannot acquires any valid policies at all.

4 Future Work

As future work, there are a number of issues to extend our current methods.
Interference between modulesOne module behavior might have interference to another one which has dif-

ferent actuators. For example, the action of a navigation module will disturb the state transition from the
view point of the kicking device module; the catching behavior will be success if the vehicle stays while it
will fail if the vehicle moves.

Self-assignment of modulesIt is still an important issue to find a purposive behavior for each learning mod-
ule automatically. In (Takahashi & Asada 2000), the system distributes modules on the state space uni-
formly, however, it is not so efficient. In (Takahashi, et al. 2003), the system decomposes the task by itself,
however, the method uses many heuristics and needs instruction from a coach. In many cases, the designers
have to define the goal of each module by hand based on their own experiences and insights.

Self-construction of hierarchy Another missing point in the current method is that it does not have the mech-
anism that constructs the learning layer by itself.

Self-segmentation of situation (Edazawa, et al. 2004) shows that the straightforward application of a modu-
lar learning system to the multi-agent system has not shown the enough performance of self-segmentation
of situation.

References

M. Asada, et al. (1999). ‘RoboCup: Today and tomorrow – What we have learned’.Artificial Intelligencepp.
193–214.

K. Doya, et al. (2000). ‘Multiple Model-based Reinforcement Learning’. Tech. rep., Kawato Dynamic Brain
Project Technical Report, KDB-TR-08, Japan Science and Technology Corporatio.

K. Edazawa, et al. (2004). ‘Modular Learning System and Scheduling for Behavior Acquisition in Multi-Agent
Environment’. InRoboCup 2004 Symposium papers and team description papers, pp. CD–ROM.

R. Jacobs, et al. (1991). ‘Adaptive mixture of local expoerts’.Neural Computation3:79–87.
S. P. Singh (1992). ‘Reinforcement Learning with a Hierarchy of Abstract Models’. InNational Conference

on Artificial Intelligence, pp. 202–207.
Y. Takahashi & M. Asada (2000). ‘Vision-Guided Behavior Acquisition of a Mobile Robot by Multi-Layered

Reinforcement Learning’. InIEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1,
pp. 395–402.

Y. Takahashi & M. Asada (2001). ‘Multi-Controller Fusion in Multi-Layered Reinforcement Learning’. In
International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI2001), pp.
7–12.

Y. Takahashi, et al. (2003). ‘Incremental Purposive Behavior Acquisition based on Self-Interpretation of
Instructions by Coach’. InProceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. CD–ROM.

