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Abstract

Binding is one of the most fundamental cog-
nitive functions, how to find the correspon-
dence of sensations between different modali-
ties such as vision and touch. Without a pri-
ori knowledge on this correspondence, bind-
ing is regarded to be a formidable issue for a
robot since it often perceives multiple physi-
cal phenomena in its different modal sensors,
therefore it should correctly match the foci
of attention in different modalities that may
have multiple correspondences each other. We
suppose that learning the multimodal repre-
sentation of the body should be the first step
toward binding since the morphological con-
straints in self-body-observation would make
the binding problem tractable. The mul-
timodal sensations are expected to be con-
strained in perceiving own body so as to con-
figurate the unique parts of the multiple cor-
respondence reflecting its morphology. In this
paper, we propose a method to match the foci
of attention in vision and touch through the
unique association by cross-anchoring differ-
ent modalities. Simple experiments show the
validity of the proposed method.

1. Introduction

Binding is one of the most fundamental cognitive
functions, how to find the correspondence of sen-
sations between different modalities such as vision
and touch, both of which are major sources of per-
ception not only for the external world but also for
the agent’s body itself. The latter is closely related
to the body representation which is often given by
the designer and fixed but has much influence on the
adaptability to the changes in the environment and
the robot body itself. Assuming that the designer

does not give any explicit knowledge on the body rep-
resentation, a robot should construct its body rep-
resentation only from its uninterpreted multimodal
sensory data. In this process, Binding has a signifi-
cant role.

Recently, researchers in other fields focus on
the binding problem, which concerns the capabil-
ity to integrate information of different attributes
(Treisman, 1999). To propose the model for the
binding mechanism of humans based on a construc-
tivist approach, we should start with an assump-
tion that the designer does not give any a pri-
ori knowledge on what the robot’s sensors receive,
but the robot can discriminate the different sensor
modalities such as vision and touch. Since the pre-
vious work in the constructivist approach focused
on the binding problem between visual attributes
(Tononi et al., 1992, Seth et al., 2003), it has still
not been clear how to bind different sensor modali-
ties. Generally, receptive fields for touch and vision
are simultaneously stimulated, but often respond to
different physical phenomena since the foci of atten-
tion in these modalities are often different. In other
words, the robot does not always watch its touching
region. Therefore, to bind different modalities, the
robot should correctly match the foci of attention
in different modalities that may have multiple corre-
spondences each other. However, the previous work
escaped from this kind of problem by assuming that
it can observe only matched sensations in different
modalities (ex. (MacDorman et al., 2000)).

We suppose that learning the multimodal repre-
sentation of body should be the first step toward
binding since the morphological constraints in self-
body-observation would make the binding problem
tractable. The multimodal sensations are expected
to be constrained in perceiving own body so as to
configurate the unique parts of the multiple cor-
respondence reflecting its morphology. Therefore,



building a robot that can acquire the representation
from multimodal sensory data is an interesting is-
sue from a viewpoint of a constructivist approach
towards both establishing the design principle for an
intelligent robot and understanding the process how
humans acquire their body representation. In this
study, as an example of the binding problem, we fo-
cus how it can learn to watch its body part when it
detects the collision on it.

Yoshikawa et al. have proposed the method
to learn the multimodal representation of the
body surface through double-touching, that is
touching its body with its own body part
(Yoshikawa et al., 2002). It is based on the idea that
the tactile sensors which collide with each other also
coincide with each other in its vision. In other words,
self-occlusion, that is the occlusion caused by cov-
ering its body with its own body part in its view,
always occurs at the double-touching part. They as-
sumed that there is only one self-occlusion at a mo-
ment. However, there can be multiple self-occlusions
since the body occupy a certain volume in the phys-
ical space. For example, when the agent touches its
body trunk with its hand, not only the hand but
also its arm cover its body trunk from its sight, i.e.,
multiple self-occlusions occur. Therefore, there still
remains the binding problem where it must deter-
mine which self-occlusion should be bound to the
double-touching and vice versa.

As in the previous work (Yoshikawa et al., 2002),
it seems reasonable to utilize the fact that self-
occlusion always occurs at the double-touching part.
In the rest of this paper, we presents the method to
match the foci of attention to its own body in vision
and touch by virtue of the morphological constraint.
In the proposed method, the mismatched responses
in these modalities can be discarded through the
process of unique association where corresponding
pairs of subsets in different attributes are exclusively
connected with each other by what we call cross-
anchoring.

2. Learning mechanism

In the following argument, we suppose that it has a
human-like configuration in which it has a trunk with
a camera and a end-effector connected through the
serial links, that is, the robot consists of its trunk,
a camera head and a arm. Furthermore, we assume
that the robot has acquired the competences to de-
tect self-occlusion and double-touching.

Problem in the statistical approach Since the
robot does not have a priori knowledge how to bind,
we suppose that it keeps changing the posture both of
its arm and its camera head at random to explore for
binding. In the exploration, it perceives its posture
and the view in the center region of its camera. Fig.

1 illustrates the simplified situations of the robot’s
exploration for binding.
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Figure 1: Five simplified situations in the robot explo-

ration: Top rectangle indicates the robot’s trunk while

the rectangle with a circle in the middle indicates the

robot’s arm. The arrow from the bottom object shows

the its focus of attention in vision.

The fact that the body occupies a certain vol-
ume in the physical space remains binding problem
formidable. For example, a double-touching posture
causes self-occlusions at multiple parts (see Figs. 1
(a) and (b)) while a self-occlusion at a part is caused
by several double-touching postures (see Figs. 1 (a)
and (d)). In the explorations, the robot sometimes
experiences the matched responses in the different
modalities which are caused by focusing on the same
region, in this case detecting the self-occlusion at the
double-touching point (see Fig. 1 (a)). However, such
experiences of the matched response is not signifi-
cantly frequent compared to mismatched responses
(see Fig. 1 (b) or (d)) since it explores at random in-
stead of utilizing a priori knowledge. In other words,
the correctly matched responses are not significantly
major in the obtained data. Therefore, it is difficult
to associate them by considering all obtained data
through the exploration. Then, we need a mecha-
nism to narrow down the influence of the mismatched
data on learning while augmenting the influence of
the matched one.

Cross-anchoring Hebbian learning rule We
can utilize the following two morphological con-
straints: 1) how many double-touching postures oc-
cludes a certain part on the trunk depends on the
location of the part to be occluded, and 2) how many
parts the robot occludes by a double-touching pos-
ture depends on the location of the contact part.
These facts indicate that there exist cue nodes which
have fewer candidates for matched response in other
modalities to be bound. Since the desired corre-
spondence between touch and vision can be found
by unique association in this case, we can utilize
such cue nodes as anchors of the unique associa-
tion. Therefore, we introduce a learning rule with an
anchoring mechanism which can adapt the learning
rate according how much the responses simultane-
ously observed are regarded as unique to each other.
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Figure 2: The architecture

The architecture consists of two layers called the
double-touching layer and the self-occlusion one (see
Fig. 2). In the double-touching layer, there are Nt

nodes each of which is responsible for a set of certain
posture of the arm Θi, (i = 1, · · · , Nt) which is as-
sumed to be pre-clustered. When the posture of the
arm is θ ∈ <m, the activation of the i-th node tai(θ)
is 1 if θ ∈ Θi, otherwise 0. On the other hands, in the
self-occlusion layer, there are No nodes each of which
is responsible for the self-occlusion in a set of certain
posture of the camera head Φj , (j = 1, · · · , No) which
is assumed to be pre-clustered. When the posture of
the camera head is φ ∈ <n, the activation of the j-th
node oaj(φ) is 1 if φ ∈ Φj , O, otherwise 0, where O
is the phenomenon of detecting occlusion.

Let the connection weight between the i-th node in
the double-touching layer and the j-th node in the
self-occlusion layer be wij . By the cross-anchoring
Hebbian learning rule, wi∗j∗ is updated as following:

∆wi∗j∗ = η(tdi∗j∗
tai∗ · odi∗j∗

oaj∗ − wi∗j∗), (1)

where i∗ and j∗ are the most activated units in
the double-touching and the self-occlusion layer, η
is a constant learning rate. The dynamic anchoring
rates, tdij and odij , determine the degrees of anchor-
ing on the j-th node in the self-occlusion layer from
the i-th nodes in the double-touching layer and on
the i-th node in the double-touching layer from the
j-th nodes in the self-occlusion layer, respectively.
They are calculated by

tdij = exp
(
−

∑
k,k 6=j wik

tσ2
a

)
,

odij = exp
(
−

∑
k,k 6=i wkj

oσ2
a

)
, (2)

where tσa and oσa are parameters that determine the
degree of anchoring. Meanwhile, the remaining con-
nection weights are decreased because they loss the
competition;

wij∗(t + 1) = wij∗(t)− ηt(1− tdij∗)∆wi∗j∗ ,
wi∗j(t + 1) = wi∗j(t)− ηo(1− odi∗j)∆wi∗j∗ , (3)

where ηt and ηo are constant coefficients of the com-
petition.

In such an anchoring process, more unique com-
binations of double-touching and self-occluded are

bound earlier since they obtain larger anchoring rates
according to eqs. (2). Meanwhile, some of the rest
combinations become more unique since the other
responses decrease the number of candidates to be
bound by losing the responses that are already bound
to others. Therefore, the process of binding proceeds
step by step. This process is expected to converge
since it is considered that there exist cue nodes in
each modality due to the constraint in its human-
like configuration.

3. Simulation

As preliminary experiments, we tested the cross-
anchoring Hebbian learning rule works so that the
robot solves the binding problem by using the com-
puter simulation of a robot with a 1-DoF sliding arm,
a 1-DoF rotating camera head as in Fig. 1. During
the exploration for binding, it moves its arm and
camera head at random and detects self-occlusion
and double-touching.

For the reader’s understanding, we pre-clustered
the posture space both of the arm and the camera
head so that the nodes in both layers were matched
with each other in one-to-one manner. The robot was
trained for binding in 4,000 double-touching trials
with the following network parameters: Nt = No =
10, η = 0.1, ηt = ηo = 0.5, and tσa = oσa = 1.0.
Figs. 3 (a):(I) ∼ (IV) show the process of learning
connection between double-touching layer and self-
occlusion one. It can be seen that it starts with
multiple connections and finally succeeded in bind-
ing since it obtained the correct one-to-one mapping
at the 4,000-th step.

Furthermore, we can see that the connections grew
up both from the right and left ends to the center. It
seems to show the process that cross-anchoring be-
tween a pair of nodes seems to make neighbor pairs
of nodes more unique to each other and therefore
guides cross-anchoring between the neighbor pairs.
Such propagation of cross-anchoring starts from the
pairs of nodes, either of which is a cue node. Con-
sistently with the analysis of the learning procedure,
the left end node in the bottom layer and the right
end node in the top layer were cue nodes due to the
morphological constraints. In this case, since the
camera and the end-effector were connected through
a serial link, how to double-touch and how to self-
occlude were constrained. For example, the double-
touching at the left end of the trunk could guide the
self-occlusion only at the same part while the self-
occlusion at the right end could be caused by the
double-touching only at the same part.

Figs. 3 (b):(I) ∼ (IV) show the process of the learn-
ing connections in the case that the posture spaces
of the camera head and the arm were pre-clustered
in different resolutions. In this case, the resolution
of the double-touching was twice in the case of self-



occlusion. The parameters were Nt = 12, No = 6,
η = 0.1, ηt = 0.5, ηo = 0.25, and tσa = oσa = 1.0.
Since it finally obtains the desired one-to-many map-
ping, we may conclude that it succeeds in binding
despite the different resolutions.

After these processes, when the robot double-
touches its body trunk, it can use the acquired map-
ping to know how to shift the focus of attention
in the vision to the double-touching part by prop-
agating the activation of the nodes responsible for
the double-touching through the learned connection.
Shortly, it can watch its touching part on its body.

(II) 400 [step] (II) 400 [step]

(III) 1000 [step] (III) 1000 [step]

(IV) 2000 [step] (IV) 2000 [step]

(V) 4000 [step] (V) 6000 [step]

(a) one-to-one (b) one-to-many

Figure 3: The process of learning connection between the

layers ((I) ∼ (V)) with the same resolution (a) and with

the different one (b).

4. Conclusion

In this paper, we addressed the issue how to solve
the binding problem in different modalities for body
representation. We proposed a method called cross-
anchoring Hebbian learning rule to perform binding
by virtue of the morphological constraints in self-
body-observation. In the computer simulations, we
showed that the robot can succeed in matching its
foci of attention in vision and touch.

There are parameters in the proposed learning rule
that determine how much the degree of anchoring is.
Since it should be well selected to obtain the unique
association, we should put a mechanism to adapt it
when the system fail to bind. Topographical con-
straint caused by the the receptive fields with conti-
nuity that reflects the physical continuity could be a
criteria for the adaptation. Furthermore, the robot
needs the competence of binding in the case where
it learns multimodal representation of the external
objects. Although we concentrated on the binding
problem concerning the self body in this paper, ex-
tending the proposed method for the binding prob-
lem involving tactile sensations of being touched by
others is one of our future work.
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