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Abstract— Finding the body in uninterpreted sensory data
is one of the fundamental competences to construct the body
representation that influences on adaptabilities of the robot
to the changes in the environment and the robot body. The
invariance of sensations in self-observation seems a promising
key information to find the body. However, since each sensory
attribute can be invariant only in the observation of a part
of the body, the robot should complementarily utilize the
invariance of the multiple sensory attributes. In this paper,
we propose a method of body-nonbody discrimination by
complementarily utilizing multiple sensory attributes based
on a conjecture about the distribution of the variance of
sensations for each observing posture, where it can be ap-
proximated by a mixture of two Gaussian distributions which
are for observing the body and the nonbody, respectively. By
estimating the distribution, the robot can automatically find
a discrimination hyperplane to judge whether it observes its
body in the current observing posture. Simple experiments
show the validity of the proposed method.

I. I NTRODUCTION

Adaptability to the changes in the environment and
the robot body fundamentally depends on the robot body
representation that is often given by the designer. However,
it is difficult for the designer to prepare the universal
body representation that can be applied to any kinds of
robots since the designing process involves understanding
robot’s embodiment (i.e., how the robot is embodied) that
depends on its body structure, the environment, the sensory
attributes, and so on. Therefore, a robot should possess
the competence to acquire its body representation from its
uninterpreted sensory data by itself. On the other hands,
the representation of the body in human beings, that is so-
called body schemeor body image, is one of the hottest
topics in the brain science [1], [2] but the acquisition
process of it has not been revealed yet. Therefore, building
a robot that can acquire its body representation by itself is
an interesting issue from the viewpoint of a constructivist
approach towards both establishing the design principle for
an intelligent robot and understanding human intelligence
[3].

In the previous work on acquiring body representation
of the robot, the designer usually givesa priori knowledge
to find a part that can be interpreted as the sensation of
the body in the sensory data [4], [5], [6], [7]. However,
finding the body in its uninterpreted sensory data seems
the first step to acquire body representation since how to

find it depends on the robot’s embodiment. Although the
method based on the correlation of an optic flow with
the motion is proposed to find the position of the end-
effector [8], it is not clear whether it works in the case
where the robot moves both its end-effector and its camera
head, in other words, where the robot is not givena priori
knowledge of the physical meanings of its DoFs. Without
sucha priori knowledge, Yoshikawa et al. have proposed
a method to find the body based on the invariance of
a sensory attribute with its observing posture [9]. Since
they implemented the idea based on Hebbian learning
between the nodes for the external sensor and the robot’s
proprioception, it is limited to utilize the invariance of one
single sensory attributes. However, since each attribute can
be invariant only in the observation of a part of the body,
the robot should complementarily utilize the invariance of
the multiple sensory attributes in parts of self-observation.

In this paper, we propose a method of body-nonbody
discrimination by complementarily using multiple sen-
sory attributes based on the invariance of sensations in
self-observation. Sensations can be caused by observing
the body or by observing the external world while the
sensations of the body involves less variance than one
of the external world. Therefore, it is conjectured that
the distribution of the variance of sensations for each
observing posture can be approximated by a mixture of
two Gaussian distributions which are for observing the
body and the nonbody. After estimating the distribution via
the EM algorithm [10], the robot can automatically find a
discrimination hyperplane to judge whether it observes its
body in current observing posture by applying the linear
discriminant method [11].

In the rest of this paper, first we revisit the basic
idea of the invariance in self-observation that is proposed
in the previous work [9] and its limitation. Then, to
perform automatic body-nonbody discrimination with the
multiple sensory attributes, we introduce the mixture of
Gaussian distributions as a model of the invariance in self-
observation. By using a test-bed robot with plural types of
texture on its body surface, we show the experiments to
test the proposed method work.



II. A N APPROACH TO FINDING SELF BODY BASED ON

THE INVARIANCE IN SELF-OBSERVATION

On the issue how to find the body of the robot from
uninterpreted sensory data, it seems reasonable to follow
the idea in the previous work that the sensations of its
body are invariant with its observing posture [9] although
it is limited to utilize the invariance of only one sensory
attribute. In this section, first we describe the assumptions
in the problem to find the body from uninterpreted sensory
data, and then revisit the previous approach [9] and point
out its limitation.

a) The problem and the assumptions:The robot ob-
serves its body or the external world with multiple sensory
attributes and can shift its focus of attention by changing its
posture. Although discrimination between proprioceptive
sensors and external ones is one of formidable issues as
addressed by Philipona et al. [12], here we assume that
the robot can distinguish them as a starting point. It per-
ceives the current posture but does not know the physical
meanings of each DoF, namely, it can not distinguish the
DoFs for the camera head and ones for the arm. In these
assumptions, the problem to be attacked is to learn to judge
whether the sensation in the current posture is caused by
observing its body or by observing the external world. For
the simplicity of the results, we concentrate on the visual
attributes at the center region of its camera image in this
paper.

b) The basic idea of the previous work and its limita-
tion: Sensations by an external sensor, that is a camera in
this paper, are related with the robot’s proprioception since
the camera is embedded in its body. For example, when it
fixates one object in the environment, the view changes
depending on the environmental changes (see Fig. 1).
However, when it fixates its body, the view is independent
of the environment. The basic idea of the previous work to
find the body is learning the invariance of the relationship
between the sensory data of the external sensor and one of
its proprioception. In other words, the robot judges what
is always observed as its body.

(a) (b)

Fig. 1. The invariance/variance of the relationship among view and the
observing posture in different environments ((a) and (b)).

The learning mechanism was implemented by adopting
Hebbian learning between the nodes which are sensitively
activated to a specific sensor signal both from the external
sensors and the proprioceptive ones. Therefore, the connec-
tion weights between the nodes of the proprioception and
the external sensor which are activated in self-observation

increase while ones not in self-observation decrease. Al-
though the robot can judge whether the fixated object is
its body based on the amount of the learned connection
weights, the designer must prepare different thresholds for
different robot’s embodiment.

Furthermore, they do not cope with the case where
the robot has multiple sensory attributes. However, each
attribute can be invariant only in the observation of a
part of the body since the sensing process depends on the
relationship between the type of the sensory attributes and
the fixated object. For example, the luminance pattern of a
body part with a fine texture easily varies with the trans-
lation of the fixating point while the disparity of one with
a repeated texture easily varies with mismatching between
views. Therefore, the robot should use the multiple sensory
attributes so that they complementarily work for varieties
of textures on the robot body. Furthermore, compared to
the case with a single attribute, it is more complicated to
determine the threshold to find the body in the case with
multiple ones since how to let them complementarily work
should be considered.

III. BODY-NONBODY DISCRIMINATION WITH MULTIPLE

SENSORY ATTRIBUTES

To discriminate the body and nonbody with multiple sen-
sory attributes based on the invariance in self-observation,
we need to introduce a new way to complementarily use
multiple attributes complementarily. For this purpose, we
conjecture that the distribution of the variance of sensations
for each observing posture can be approximated by a
mixture of two Gaussian distributions.

A. Mixture of Gaussian distribution model of the observing
variance of sensations

Suppose that the robot can observe the fixated object
with D types of the sensory attributes such as disparity,
luminance patterns, chroma, and so on. It moves the
fixating point by changing its postureθ ∈ <N which is
measured by the encoders. Let thei-th sensory attribute in
θ be xi(θ) ∈ <Mi , (i = 1, · · · , D).

The robot can measureσ2
i (θj) that is the variance of

the sensation withi-th attribute for each postureθj , (j =
1, · · · , qθ) whereθj is thej-th posture in which the posture
is quantized inqθ postures. We define observing variance
vector

z(θ) = [σ̃1(θ)2, · · · , σ̃D(θ)2]T ∈ <D, (1)

whereσ̃2
i (θj) is a normalized variance of thei-th attribute

in j-th postureσ2
i (θj).

Since sensation can be caused by observing the body or
by observing the external world while the sensations of the
body involves less variance than one of the external world
according to the previous work [9], it is conjectured that
the distribution of observing variance vectors can be regard
as a mixture of two Gaussian distributions which are for
observing the body and the nonbody, respectively (see Fig.
2). In other words, the distribution ofz is given by

p(z; α) = wbN (z; µb,Σb) + weN (z; µe,Σe) (2)



whereN (z;µ,Σ) denote a normalized Gaussian distribu-
tion of z with the averageµ and the covariance matrix
Σ and sufficesb ande indicate the body and the environ-
ment, respectively, andα = {wb, µb, Σb, we, µe,Σe}. The
weightswb andwe are satisfied

wb + we = 1,
0 ≤ wb, we ≤ 1. (3)
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Fig. 2. Mixture of Gaussian distribution model of observing variace
vector

B. Estimation of the distribution

Since the robot can measurez(θ) but does not know
which of two distributions generates the measuredz(θ), it
must estimate the distribution (eq. 2) from the incomplete
data, that isZ = {z(θ1), · · · , z(θqθ

)}. We can apply the
EM algorithm [10] to this kind of problem, which is a
theoretical paradigm to estimate the maximum likelihood
parameters from an incomplete data.

According to the EM algorithm, to obtain the parameters
that maximize the logarithmic likelihood function such as

L = log p(Z|α), (4)

the expectation process and the maximization process are
iterately performed until they converge for given initial
parameters. In the expectation process, the expectation of
the logarithmic likelihood function of the complete data in
a given condition ofZ andα(t),

Q(α|α(t)) = EZ{log p(Z, H|α)|Z,α(t)} (5)

is calculated whereα(t) is the estimated parameter set
until the t-step andH is a set of hidden parameters that
identify which of two distributions generatesz(θ). In the
maximization process,α is updated so that the newα
maximize Q(α|α(t)). It is guaranteed that each iteration
of the expectation and maximization process of the EM
algorithm increases the logarithm likelihood function [10].

C. Body-nonbody discrimination with the estimated distri-
bution

For the sake of body-nonbody discrimination, that is
judging whether the current sensation inθ is caused
by the self-observation, the robot judges which of two
distributions more likely generates a givenz(θ). We apply
the Fisher’s linear discriminant method [11] to judge the
cause ofz(θ). The discrimination function is described as

g(z(θ)) = κT z(θ) + κ0 (6)
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Fig. 3. The robotic test-bed: (a) the whole body and (b) an egocentric
view

where κ is the vertical vector of the discriminant hy-
perplane,g(z(θ)) = 0, and κ0 is the offset of this
hyperplane. According to the linear discriminant method,κ
to discriminate two Gaussian distributions is satisfied with

κ ∝ (ωbΣb + ωeΣe)−1(µb − µe). (7)

Selectingκ0 is equivalent to determine the point where
the discriminant hyperplane intersects. Here, we select it
so that the discriminant hyperplane intersects on the middle
point of two distributions, therefore

g(z) = (µ̂1−µ̂2)
T (ωbΣb+ωeΣe)−T (z− µ̂1 + µ̂2

2
), (8)

whereA−T indicates the transpose of the inverse matrixA
and{ŵb, µ̂b, Σ̂b, ŵe, µ̂e, Σ̂e} are the estimated parameters
via the EM algorithm. Finally, the robot can regard what
it perceives inθ is its body if g(θ) > 0.

IV. EXPERIMENTS

In this section, we show a series of experiments us-
ing a robotic test-bed (see Fig. 3(a)). To test whether
the proposed method works independently of the robot’s
embodiment, we paste different textures, one is fine and
the other is coarse, on the different parts of the arm as
shown in an egocentric view of the robot (see Fig. 3(b)).
The robot consists of two cameras on the camera head
which can rotate in pan and tilt axes, the 4-DoF arms,
and the mobile base and detect four visual attributes at
the center region of the left camera, namely, disparity,
luminance pattern, chroma, and direction of edges. In the
following experiments, however, we only show the case
where the arm is fixed in a certain posture as shown in
Fig. 3(a) for understanding.

It learns the variance of sensations with each attribute
for each posture quantum by randomly changing its posture
both of its camera head. During the learning process, we let
the robot move around to make the external world varies.
Fig. 4(a) shows schematic examples of observing posture
and the correction of the average luminance patterns at
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Fig. 4. An schematic explanation of (a)the learning process and (b)the
desired extraction of the body

the center region of the left camera for each quantized
posture that are arranged in two dimension, pan (the
horizontal axis) and tilt (the vertical one). Blank boxes on
the correction image are the average luminance patterns in
the example of observing posture. Note that the correction
image in Fig. 4(a) is slightly different from an egocentric
view in Fig. 3(b) since the latter is a entire image of the
camera while the former is a correction of a part of the
image in various postures of the camera head. The task
to be attacked is to extract the posture quanta of camera
head in which the robot observes its body. Fig. 4(b) shows
the extracted posture quanta with the average luminance
pattern by the correct body-nonbody discrimination. Note
that although we, human being, can easily distinguish the
body and the environment by looking at the correction
image in Fig. 4(a) and obtain correct extraction result (Fig.
4(b)), it is formidable for a robot since it is not given any
a priori knowledge about the difference between its body
and the external world.

After learning the variance of sensations for each pos-
ture, we test how the body-nonbody discrimination by the
proposed method extracts the robot’s body with a single
visual attribute, two of them, and all of them in order.
Note that the variances are normalized in the logarithmic
scale.

A. Body-nonbody discrimination with single attributes

First we test the proposed method with two single
attributes, namely, disparity and luminance pattern. Fig.
5 shows the result of the body-nonbody discrimination
with disparity. Fig. 5(a) shows the distribution of observ-
ing variances of the disparity (solid histogram) and the
estimated mixture of Gaussian distributions (broken curve).

We can see that the distribution at lower observing variance
corresponds to the self-observation while the other corre-
sponds to observing the external world. Fig. 5(b) shows
the average disparity in each posture of the camera head,
where deeper black indicates larger disparity. Although we
can see that the robot detects larger disparity for the posture
in which it observes its arm, we cannot preset the threshold
of disparity to separate the arm and the external world since
it depends on the robot’s embodiment. Fig. 5(c) illustrates
the average disparity of the extracted body in the posture
where the observing variance is regarded to be caused
by the distribution of self-observation. By comparing Fig.
4(b) and Fig. 5(c), We can see that the body part with
fine texture is correctly extracted while one with coarse
texture is not. It seems because the robot tends to fail in
stereo matching needed to detect the disparity at the coarse
texture.
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Fig. 5. Body-nonbody discrimination with disparity

Then we test the case using luminance pattern, that is
a vector which consists of the luminance of the image
elements at the center region (8× 8 [pixel]) of the left
camera. Fig. 6(a) shows the distribution of variances of
the luminance pattern for each posture (solid histogram)
and the estimated mixture of Gaussian distributions (broken
curve). We can see that the distribution at lower observing
variance corresponds to the one for self-observation while
the other corresponds to the one for observing the external
world. Fig. 6(b) shows the average luminance pattern in
each posture of the camera head. Fig. 6(c) illustrates the
averaged luminance pattern of the extracted body in the
case with the observing variance is regarded to be caused
by the distribution of self-observation. By comparing Fig.



4(b) and Fig. 6(c), We can see that the body part with
coarse texture is correctly extracted while one with fine
texture is not. It seems because the observed luminance
pattern of the fine texture sensitively varies with the slight
changes of observing posture.
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Fig. 6. Body-nonbody discrimination with luminance pattern

B. Body-nonbody discrimination with two attributes

To show how multiple visual attributes complementarily
work to find the body, we experiment with two attributes,
namely the disparity and the luminance pattern. Fig. 7(a)
shows the distribution of observing variance vectors each
of which consists of the variance of disparity and one of
luminance pattern for each posture. Fig. 7(b) is the esti-
mated mixture of Gaussian distributions. We can see that
the distribution at lower observing variance corresponds to
the one for self-observation while the other corresponds
to the one for observing the external world. Fig. 7(c)
illustrates the average luminance pattern of the extracted
body where observing variance is regarded to be caused
by the distribution of self-observation. We can see that the
body parts both with coarse and fine textures are almost
extracted. It is considered that the two attributes make up
the loss of the extraction which are the body parts with
coarse texture in disparity and one with fine texture in
luminance pattern.

C. Body-nonbody discrimination with several attributes

To show whether the proposed method work in the case
with several attributes including one by which result in
incorrect extraction, we add two more attributes, namely,
chroma and direction of edges, each of which is an
averaged value at the image element in the center region
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Fig. 7. Body-nonbody discrimination with both disparity and luminance
patter

(8×8[pixel]) of the left camera. In the rest of this section,
first we show the result of the body-nonbody discrimination
with a new single attributes and then one with all attributes.

Fig.s 8 (a) and 9 (a) show the distribution of variances
of chroma and direction of edges (solid histogram) and
their estimations (broken curve). We can see that the
distribution at lower observing variance corresponds to the
one for self-observation while the other corresponds to the
one for observing the external world as in the previous
experiments. Fig. 8(b) and Fig. 8(c) are the average chroma
in each posture and the extracted body with the chroma
while Fig. 9(b) and Fig. 9(c) show the similar graph
of the result with the direction of the edge. From the
comparison to Fig. 4(b), we can see that there is some
loss of the extraction by chroma at the body part with
the fine texture as luminance pattern while there is some
incorrect extraction of the external world by the direction
of the edge.

Fig. 10 shows the result of body-nonbody discrimination
with all attributes, disparity, luminance pattern, chroma and
direction of edges. We can see that the multiple attributes
complementarily work to find the body even if there is
some incorrect extraction of the external world. Therefore,
we can conclude that the proposed method works even if
the robot use some not appropriate attributes with which
body-nonbody discrimination result in incorrect extraction.

V. CONCLUSION

In this paper, we extend the previous study to find the
body of the robot from uninterpreted sensory data for
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Fig. 8. Body-nonbody discrimination with chroma

the complemental use of multiple attribute based on the
conjecture that the distribution of the observing variance
can be regarded as a mixture of two Gaussian distributions.
By the experiment using a real robot with varieties of
textures on the body surface, we confirm that the proposed
method works even if the robot use some not appro-
priate attributes with which body-nonbody discrimination
result in incorrect extraction. The competence of body-
environment discrimination seems a basis of constructing
the representation of the body which is one of our future
work.

ACKNOWLEDGMENT

The Advanced and Innovational Research program in
Life Sciences of the Ministry of Education, Culture, Sports,
Science and Technology of the Japanese Government and a
Research Fellowship for Young Scientists from Japan So-
ciety for the Promotion of Science supported this research.

REFERENCES

[1] A. Iriki, M. Tanaka, and Y. Iwamura, “Coding of modified body
schema during tool use by macaque postcentral neurons,”Neurore-
port, vol. 7, pp. 2325–2330, 1996.

[2] V. S. Ramachandran and S. Blakeslee,Phantoms in the Brain:
Probing the Mysteries of the Human mind. William Mollow, 1998.

[3] M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi,
“Cognitive developmental robotics as a new paradigm for the design
of humanoid robots,”Robotics and Autonomous System, vol. 37, pp.
185–193, 2001.

[4] Y. Yoshikawa, H. Kawanishi, M. Asada, and K. Hosoda, “Body
scheme acquisition by cross modal map learning among tactile,
image, and proprioceptive spaces,” inProc. of the Second Intl.
Workshop on Epigenetic Robotics, 2002, pp. 181–184.

[5] K. F. MacDorman, K. Tatani, Y. Miyazaki, and M. Koeda, “Proto-
sysmbol emergence,” inProc. of the Intl. Conf. on Intelligent Robot
and Systems, 2000, pp. 1619–1625.

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

 1
.2

 1
.4

 1
.6

 0  0.2  0.4  0.6  0.8  1

 0
 3

 6
 9

 12

pr
ob

ab
ili

ty
 d

en
si

ty

the num
ber of data

log σ2
e

1st kernel
2nd kernel

acquired data

(a) distribution of observing vari-
ance and its estimation

pan axis

ti
lt

 a
x
is

(b) the correction of the
average disparity

pan axis

ti
lt

 a
x

is

(c) the extracted body

Fig. 9. Body-nonbody discrimination with direction of the edge

pan axis

ti
lt

 a
x

is

Fig. 10. Body-nonbody discrimination with multiple sensory attributes,
disparity, luminance pattern, chroma, and direction of the edge

[6] A. Sotytchev, “Development and extension of the robot body
schema,” inProc. of the third Intl. Workshop on Epigenetic Robotics,
2003, pp. 179–180.

[7] P. Morasso and V. Sanguineti, “Self-organizing body schema for
motor planning,”Journal of Motor Behavior, vol. 27, no. 1, pp.
52–66, 1995.

[8] P. Fitzpatrick and G. Metta, “Toward manipulation-driven vision,”
in Proc. of the Intl. Conf. on Intelligent Robot and Systems, 2002,
pp. 43–48.

[9] Y. Yoshikawa, K. Hosoda, and M. Asada, “Does the invariance in
multi-modalities represent the body scheme? - a case study with
vision and proprioception -,” inProc. of the 2nd Intl. Symposium
on Adaptive Motion of Animals and Machines, 2003, pp. SaP–II–1.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likeli-
hood from incomplete data via the em algorithm,”Journal of the
Royal Statistical Society, vol. B-39, pp. 1–38, 1977.

[11] R. O. Duda, P. E. Hart, and D. G. Stork,Pattern Classification
Second Edition. John Wiley & Sons, Inc, 2001, ch. Maximum-
Likelihood and Bayesian Parameter Estimation.

[12] D. Philipona, J. O’Regan, and J.-P. Nadal, “Is there something
out there? inferring space from sensorimotor dependencies.”Neural
Computation, vol. 15, no. 9, pp. 2029–2049, 2003.


