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Abstract

Binding is one of the most fundamental cognitive func-
tions, how to find the correspondence of sensations between
different modalities such as vision and touch. Without a pri-
ori knowledge on this correspondence, binding is regarded
to be a formidable issue for a robot since it often per-
ceives multiple physical phenomena in its different modal
sensors, therefore it should correctly match the foci of at-
tention in different modalities that may have multiple cor-
respondences each other. Learning the multimodal repre-
sentation of the body is supposed to be the first step toward
binding since the morphological constraints in self-body-
observation would make the binding problem tractable. The
multimodal sensations are expected to be constrained in
perceiving own body so as to configurate the unique parts
in the multiple correspondence reflecting its morphology. In
this paper, we propose a method to match the foci of atten-
tion in vision and touch through the unique association by
cross-anchoring different modalities. Simple experiments
show the validity of the proposed method, and future issues
are discussed.

1 Introduction

Binding is one of the most fundamental cognitive func-
tions, how to find the correspondence of sensations between
different modalities such as vision and touch, both of which
are major sources of perception not only for the external
world but also for the agent’s body itself. The latter is
closely related to the body representation which is often
given by the designer and fixed but has much influence on
the adaptability to the changes in the environment and the
robot body itself. Assuming that the designer does not give
any explicit knowledge on the body representation, a robot

should construct its body representation only from its unin-
terpreted multimodal sensory data. In this process,binding
has a significant role.

Recently, researchers in other fields focus on the binding
problem, which concerns the capability to integrate infor-
mation of different attributes [1]. Although there are already
some models of binding, for example based on attention [2],
firing in synchrony [3, 4], and so on, it has not been still
clear how to bind different sensor modalities since they fo-
cused on the binding problem between visual attributes. To
propose the model for the cross-modal binding mechanism
of humans based on a constructivist approach, we should
start with an assumption that the designer does not give any
a priori knowledge on what the robot’s sensors receive, but
the robot can discriminate the different sensor modalities
such as vision and touch. Generally, receptive fields for
touch and vision are simultaneously stimulated, but often
respond to different physical phenomena since the foci of
attention in these modalities are often different. In other
words, the robot does not always watch its touching region.
Therefore, to bind different modalities, the robot should
correctly match the foci of attention in different modalities
that may have multiple correspondences each other.

We suppose that learning the multimodal representation
of body should be the first step toward binding since the
morphological constraints in self-body-observation would
make the binding problem tractable. The multimodal sensa-
tions are expected to be constrained in perceiving own body
so as to configurate the unique parts in the multiple corre-
spondence reflecting its morphology. Therefore, building a
robot that can acquire the representation from multimodal
sensory data is an interesting issue from a viewpoint of a
constructivist approach towards both establishing the design
principle for an intelligent robot and understanding the pro-
cess how humans acquire their body representation [7]. In
this study, as an example of the binding problem, we focus



how it can learn to watch its body part when it detects the
collision on it. The previous work on the issue of acquir-
ing body representation escaped from this kind of problem
by assuming that it can observe only matched sensations in
different modalities (ex. [5, 6]).

Yoshikawa et al. have proposed the method to learn
the multimodal representation of the body surface through
double-touching, that is touching its body with its own body
part [8]. It is based on the fact that double-touching co-
occurs withself-occlusion, that is the occlusion caused by
covering its body with its own body part in its view. Al-
though they did not take multiple self-occlusions caused by
the physical volume of the body into account, which makes
the binding problem remain formidable, it seems still rea-
sonable to utilize the fact that double-touching co-occurs
with self-occlusions. In this paper, we presents a method
to match the foci of attention to its own body in vision and
touch by virtue of the morphological constraint in the re-
lationship between double-touching and self-occlusion. In
the proposed method, the mismatched responses in these
modalities can be discarded through the process ofunique
associationwhere corresponding pairs of subsets in differ-
ent attributes are exclusively connected with each other by
what we callcross-anchoring.

In the rest of the paper, first what kind of problem is to
be solved forbinding in different modalities is explained.
Then, a possible developmental course towards binding and
a basic idea utilizing the morphological constraint of the
human-like robot’s body to perform binding are argued. Af-
ter introducing an anchoring Hebbian learning rule to per-
form unique association, we show preliminary computer
simulations of the robot which has 1-DoF or 2-DoFs arm
and a camera head to test the proposed learning rule works.
Finally, discussion with future issues is given.

2 The binding problem in different modali-
ties

In order to propose the model for the binding mechanism
of humans based on a constructivist approach, we should
start with an assumption that the designer does not give any
a priori knowledge on the robot body representation, but a
robot can discriminate the different sensor modalities such
as vision and touch. Therefore, the problem for the robot is
how to associate these different sensations to build its body
representation needed to accomplish various tasks such as
collision avoidance and object manipulation. In this study,
as an example of the binding problem, we focus how it can
learn to watch its body part in which it detects the collision.
So what is the problem?

There is a series of studies on modeling the brain mech-
anism of binding different visual attributes that are pro-
cessed in segregated areas, such as form, shape and color

[3, 4]. They built a system capable of binding these at-
tributes through the dynamic process called reentry with
topographic connections between the segregated groups of
neurons and made several suggestions to understand the
mechanism of binding in vision. However, since the to-
pographical relationship between different modal sensors
depends how they are embedded in the body, we need to
release the assumption ofa priori topographic connection
in order to cope with the binding problem between different
modalities.

This kind of binding problem has not been focused so
far although it is an important issue for acquiring the multi-
modal representation of the body. In some previous studies
on own body representation with both tactile and visual sen-
sors, the designer provided the agent with the competence
to detect the position of the touch sensors in its view [6] or
assumed that there is only one object which can collide with
its body [5]. In other words, the binding problem is solved
by the designer instead of the robot itself by assuming that
it can observe only matched sensations in different modal-
ities. However, there are often multiple visual responses to
both the body and nonbody that co-occur with the tactile
one on the body since the agent watches multiple objects
at a moment. Therefore, the robot must determine which
visual ones should be bound.

On the issue how to find the matched sensations in these
modalities, Yoshikawa et al. have proposed the cross-modal
map among vision, touch, and proprioception to learn the
representation of the body surface [8]. It is based on the idea
that the tactile sensors which collide with each other also
coincide with each other in its vision. In other words, touch-
ing its body with its own body part (i.e.,double-touching)
always co-occurs the occlusion caused by covering its body
with its own body part in its view (i.e.,self-occlusion). They
assumed that there is only one self-occlusion at a moment.
However, there can be multiple self-occlusions since the
body occupy a certain volume in the physical space. For
example, when the agent touches its body trunk with its
hand, not only the hand but also its arm cover its body trunk
from its sight, therefore, multiple self-occlusions occur.
Therefore, there still remains the binding problem where
it must determine which self-occlusion should be bound to
the double-touching and vice versa.

3 A basic idea

As suggested from the previous work [8], it seems rea-
sonable to utilize the fact that double-touching co-occurs
with self-occlusion although they did not take the physical
volume of the body into account, which makes the bind-
ing problem remain formidable. We will explain a basic
idea how the robot can correctly match double-touching and
self-occlusion based on this fact. In the following, first we



introduce the assumptions what kinds of cognitive compe-
tences it should possess and argue a possible developmen-
tal course to acquire them. Then, we show a basic idea of
cross-anchoring to solve the binding problem by virtue of
the morphological constraint. In the following argument,
we suppose that it has a human-like configuration in which
it has a trunk with a camera and an end-effector connected
through serial links, that is, the robot consists of its trunk, a
camera head and an arm.

3.1 A possible developmental course of prerequi-
site competences for binding

We assume that the robot has acquired the competences
to detect double-touching and self-occlusion. However, it
is worthy to argue how such assumptions are justified from
a viewpoint of robotics and analogy to the human develop-
ment. We propose a possible developmental course of the
prerequisite competences, which consists of three stages:
1) learning to detect double-touching, 2) finding the major
components of visual changes caused by its own camera
head motions, and 3) learning to detect self-occlusion.

assumed competences

detecting double-touching

detecting self-occlusion

realizing

self-watching
proprio-

ceptive

sensors

tactile

sensors

visual

sensors

memorizing

views of body
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visual changes

caused by camera 

head motion

modalities

Figure 1. The modalities of the robot and the
competences supposed to possess

Learning to detect double-touching At the first stage,
a robot learns to detect double-touching through the itera-
tions of double-touching. According to the assumption in
the previous work [9] that the sensation of its body is in-
variant with its posture (see Fig. 2), it can judge whether the
tactile sensation is caused by double-touching after learning
the tactile-proprioceptive map that represents how invariant
with its postures the tactile sensations are. Therefore, it can
detect double-touching when it occurs after this stage.

Since it is observed that a human fetus touches its body
with its hands in the womb [10] and it is reported that a
human neonate can distinguish double-touching from being
touched by the other in the study on rooting reflex [11], it
seems biological plausible to assume that an infant has al-
ready possessed the competence to detect double-touching
before the following stages with the visual sensation.

(I)

(II)

(a) a posture with the in-
variant touch

(I)

(II)

(b) a posture with the vari-
ant touch

Figure 2. Examples of the invariance (a) and
variance (b) of the tactile sensation with cer-
tain postures in the different environment (I)
and (II)

Finding major components of visual changes caused by
camera head motion This is prerequisite for detecting
self-occlusion. When the robot moves, an optical flow is
induced in its vision. It is considered that the motion of the
camera mainly contribute to this optical flow due to the fol-
lowing two facts: (1) the motion of the camera usually in-
duces larger optical flow components in wider region than
one of the arm and (2) what a human-like robot observes is
not usually its arm but the environment due to its configura-
tion. In other words, the motion of the camera head would
often predict the changes in the optic flow of a robot with
human-like configuration.

Therefore, the robot can find that the major components
of visual changes by finding the principle component of the
motion to predict the optic flow as performed in the previous
work [12]. Human infants can not hold their heads up in
their first several month [13], and therefore, usually lie on
the bed. It can be conjectured that this kind of immaturities
constraints infant’s motion so that the neck motion is easily
found since it usually watches external world rather than its
arm in such a situation.

Learning to detect self-occlusion According to the same
idea used in the case of double-touching, a robot learns to
detect the occurrence of self-watching, that is watching its
own body, by judging whether the visual sensations is in-
variant with its posture. If the robot learned the invariance
with respect to the posture of the camera head, it is expected
that it can detect the occurrence of self-watching of its trunk
since the visual sensations of the trunk is invariant with the
posture of the camera head. Once it learned to detect the
occurrence of self-watching and memorized the invariant
visual sensations with each posture, it can detect the occur-
rence of self-occlusion by comparing the current sensations
and the memorized one.



3.2 A learning rule for the binding problem

Since the robot does not havea priori knowledge how to
bind, we suppose that it keeps changing the posture both of
its arm and its camera head at random to explore for bind-
ing. It perceives its posture and the view in the center region
of its camera. Fig. 3 illustrates an example of self-watching
view of a human-like robot (imagine that the robot watches
its body in sitting). Fig. 4 illustrates the simplified situations
of the robot’s exploration for binding in Fig. 3, where DoFs
for the arm is simplified to one to slide its end-effector while
DoFs for the camera head is simplified to one to displace the
camera. Note that the notations in Fig. 4 correspond to those
in Fig. 3.

Concerning a point on the trunk, in this caseB, there are
following five types of experience of the robot (See Fig. 4).
In each experience, the robot detects the posture of its arm,
namely,ΘB in Fig. 4(a)-(c),ΘC in Fig. 4(d), andΘA in
Fig. 4(e). In the case where the robot double-touches with
B and tries to self-watchB (Fig. 4(a)), it detects the occur-
rence of self-occlusion. In the other cases where the robot
double-touchesB, it sometimes detects self-occlusion (Fig.
4(b)) but sometimes does not (Fig. 4(c)) depending on the
posture of its camera head. In the other cases where it self-
watchesB, it sometimes detects self-occlusion (Fig. 4(d))
but sometimes does not (Fig. 4(e)) depending on the posture
of its arm. The robot can not distinguish the self-occlusion
by its end-effector (Fig. 4(a)) from self-occlusions by the
link (Fig. 4(b) and 4(d)). Note that these kinds of experi-
ences uniformly occur for each part on the trunk since the
robot explores at random.
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Figure 3. An example of self-watching view
of the robot in double-touching: three ellip-
soids with solid and broken lines are links
in the postures ( ΘA, ΘB , and ΘC) by which it
touches with the parts labeled A, B, and C,
respectively. The rest ellipsoid with the sym-
bols D and D′ is one in the posture ( ΘD) by
which it touches the part labeled D with oc-
clusion at D and D′.
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(a)ΘB and
B

ΘB
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(b)ΘB and
A

ΘB
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(c) ΘB and
C

ΘC

BA C

(d)ΘC and
B

ΘA

BA C

(e)ΘA and
B

Figure 4. Five simplified situations in the
robot exploration: A top rectangle indicates
the robot’s trunk while a rectangle with a cir-
cle in the middle indicates the robot’s arm
that has a sliding DoF in the horizontal axis.
The bottom object shows the posture of the
robot’s camera head while the arrow indicates
its focus of attention. Notations correspond
to those in Fig. 3.

A problem in the statistical approach As mentioned
in section 2, the fact that the body occupies a certain
volume in the physical space remains binding problem
formidable. For example, a double-touching posture causes
self-occlusions at multiple parts (see Figs. 4 (a) and (b))
while a self-occlusion at a part is caused by several double-
touching postures (see figs. 4 (a) and (d)).

In the explorations, the robot sometimes experiences the
matched responses in the different modalities which are
caused by focusing on the same region, in this case detect-
ing the self-occlusion at the double-touching point (see Fig.
4 (a)). However, such experiences of the matched response
are not significantly frequent compared to mismatched re-
sponses (see Fig. 4 (b) or (d)) since it explores at random
instead of utilizinga priori knowledge. In other words, the
correctly matched responses are not significantly major in
the obtained data. Therefore, it is difficult to associate them
by considering all obtained data through the exploration.
Then, we need a mechanism to narrow down the influence
of the mismatched data on learning while augmenting the
influence of the matched one.



Cross-anchoring association Due to the morphological
constraints on the human-like configuration, we can utilize
the following two morphological constraints: 1) how many
double-touching postures occlude a certain part on the trunk
depends on the location of the part to be occluded, and 2)
how many parts the robot occlude by a double-touching
posture depends on the location of the contact part.

These facts indicate that there existcue nodes which
have fewer candidates for matched response in other modal-
ities to be bound. In this case, the self-occlusion atD can be
the cue of double-touching inΘD while a double-touching
in ΘA can be the cue of the occlusion atA. Note that the
matched response of a cue node is also experienced with
mismatched response. For example, the robot sometimes
detects a self-occlusion also atD′ during the cue double-
touching inΘD while it sometimes detects a double touch-
ing in ΘB during detecting the cue self-occlusion atA.
Since the desired correspondence between touch and vision
can be found by unique association in this case, we can uti-
lize such cue nodes as anchors of the unique association.
Therefore, we introduce a learning rule with an anchoring
mechanism which can adapt the learning rate according how
much the responses simultaneously observed are regarded
as unique to each other.

4 Cross-anchoring Hebbian learning rule

In this section, we introduce an cross-anchoring Heb-
bian learning rule as an implementation of the learning rule
with the anchoring mechanism. The architecture consists
of two layers called the double-touching layer and the self-
occlusion one (see Fig. 5). In the double-touching layer,
there areNt nodes each of which is responsible for a set of
certain posture of the armΘi, (i = 1, · · · , Nt) which is as-
sumed to be quantized in advance. When the posture of the
arm isθ ∈ <m, the activation of thei-th node is calculated
by

tai(θ) =
{

1 θ ∈ Θi

0 otherwise
. (1)

On the other hands, in the self-occlusion layer, there areNo

nodes each of which is responsible for the self-occlusion
in a set of certain posture of the camera headΦj , (j =
1, · · · , No) which is assumed to be quantized in advance.
When the posture of the camera head isφ ∈ <n, the activa-
tion of thej-th node is calculated by

oaj(φ) =
{

1 φ ∈ Φj , O
0 otherwise,

(2)

whereO is the phenomenon of detecting occlusion.

ao j

at i

dt ij
do ij

double-touching layer

self-occlusion layer

double-toching

detecter

self-occlusion

detecter

Figure 5. The architecture

Let a connection weight between thei-th neuron in
the double-touching layer and thej-th neuron in the self-
occlusion layer bewij . By the cross-anchoring Hebbian
learning rule,wi∗j∗ is updated as following:

∆wi∗j∗ = η(tdi∗j∗
tai∗ · odi∗j∗

oaj∗ − wi∗j∗), (3)

wherei∗ andj∗ are the most activated units in the double-
touching and the self-occlusion layer,η is a constant learn-
ing rate. The dynamic anchoring rates,tdij andodij , deter-
mine the degrees of anchoring on thej-th node in the self-
occlusion layer from thei-th nodes in the double-touching
layer and on thei-th node in the double-touching layer from
thej-th nodes in the self-occlusion layer, respectively. They
are calculated by

tdij = exp
(
−

∑
k,k 6=j wik

tσ2

)
,

odij = exp
(
−

∑
k,k 6=i wkj

oσ2

)
, (4)

wheretσ andoσ are parameters that determine the degree of
anchoring. Meanwhile, the remaining connection weights
are decreased because they lost the competition;

wij∗(t + 1) = wij∗(t)− ηt(1− tdij∗)∆wi∗j∗ ,
wi∗j(t + 1) = wi∗j(t)− ηo(1− odi∗j)∆wi∗j∗ , (5)

whereηt andηo are constant coefficients of the competition.

In such an anchoring process, more unique combina-
tions of double-touching and self-occluded are bound ear-
lier. Meanwhile, some of the rest combinations become
more unique since the other responses decrease the number
of candidates to be bound by losing the responses that are
already bound to others. Therefore, the process of binding
proceeds step by step. This process is expected to converge
since it is considered that there exist anchoring sensations in
each modality due to the constraint in its human-like con-
figuration.



5 Simulation results

As preliminary experiments, we tested the cross-
anchoring Hebbian learning rule works so that the robot
solves the binding problem by using the computer simula-
tion. First, we examined a robot with a single DoF to show
how learning proceeds. Then, we examined a robot with
more DoFs.

5.1 Simulation with 1-D robot

In the first experiment, we simulated a robot with a 1-
DoF sliding arm, a 1-DoF rotating camera head. Dur-
ing the exploration for binding, it moves its arm and cam-
era head at random and detects self-occlusion and double-
touching. Fig. 6 shows an example of self-watching view
of the simulated robot in double-touching. For the reader’s
understanding, we quantized the posture space both of the
arm and the camera head so that the nodes in both layers
were matched with each other in one-to-one manner. The
robot was trained for binding in 4,000 double-touching tri-
als with the following network parameters:Nt = No = 10,
η = 0.1, ηt = ηo = 0.5, andtσ = oσ = 1.0.

Figs. 7 (a):(I)∼ (V) show the process of learning con-
nection between double-touching layer and self-occlusion
one. It can be seen that it starts with multiple connec-
tions and finally succeeded in binding since it obtained the
correct one-to-one mapping at the 4,000-th step. Further-
more, we can see that the connections grew up both from
the right and left ends to the center. It seems to show the
process that cross-anchoring between a pair of nodes seems
to make neighbor pairs of nodes more unique to each other
and therefore guides cross-anchoring between the neighbor
pairs. Such propagation of cross-anchoring starts from the
pairs of nodes, either of which is a cue node. Consistently
with the analysis of the learning procedure, the left end node
in the bottom layer and the right end node in the top layer
were cue nodes due to the morphological constraints. In
this case, since the camera and the end-effector were con-
nected through a serial link, how to double-touch and how
to self-occlude were constrained. For example, the double-
touching at the left end of the trunk could guide the self-
occlusion only at the same part while the self-occlusion at
the right end could be caused by the double-touching only
at the same part.

Figs. 7 (b):(I)∼ (IV) show the process of the learning
connections in the case that the posture spaces of the camera
head and the arm were quantized in different resolutions. In
this case, the resolution of the double-touching was twice in
the case of self-occlusion. The parameters wereNt = 12,
No = 6, η = 0.1, ηt = 0.5, ηo = 0.25, andtσ = oσ = 1.0.
Since it finally obtains the desired one-to-many mapping,
we may conclude that it succeeds in binding despite the dif-

CA B

focus of the attention

the region where

self-touching is detecedsliding arm

trunk

Figure 6. An example of self-watching view of
the simulated 1-D robot in double-touching:
The biggest gray box is its trunk while the
other gray box is its sliding arm. Although
each part labeled by a symbol is correspond-
ing to Fig. 3, it is supposed that its trunk is a
plane and the DoFs for the motion of its arm
is one for the simplicity. The small box on the
horizontal line indicates the focus of the at-
tention in vision. The black box indicates the
region where double-touching is detected.

ferent resolutions.
After these processes, when the robot double-touches its

body trunk, it can use the acquired mapping to know how
to shift the focus of attention in the vision to the double-
touching part by propagating the activation of the nodes re-
sponsible for the double-touching through the learned con-
nection. Shortly, it can watch its touching part on its body.

5.2 Simulation of 2-D robot

In the second experiment, we simulated a more realistic
robot with a 2-DoF rotating arm, a 2-DoF rotating camera
head. Taking a posture of the camera head was emulated
by changing the focus of the attention in vision. Fig. 8
shows an example of self-watching view of the simulated
robot in double-touching. For the reader’s understanding,
we quantized the posture space both of the arm and the cam-
era head so that the nodes in both layers were matched with
each other in one-to-one manner. We let the robot learn the
connections 100 times in each of 100,000 double-touching
trials with the following network parameters:Nt = 25,
No = 25, η = 0.1, ηt = ηo = 2.0, andtσ = oσ = 3.0.

Fig. 9 shows the process of learning connections be-
tween double-touching layer (top) and self-occlusion one
(bottom). It can be seen that it started with multiple con-
nections and finally succeeded in binding since it obtained
the correct one-to-one mapping at the 100,000-th step. Fig.
10 shows the averaged time course of the matching errors of



(I) 100 [step] (I) 100 [step]

(II) 400 [step] (II) 400 [step]

(III) 1000 [step] (III) 1000 [step]

(IV) 2000 [step] (IV) 2000 [step]

(V) 4000 [step] (V) 6000 [step]

(a) one-to-one (b) one-to-many

Figure 7. The process of learning connection
between the layers ((I) ∼ (V)) with the same
resolution (a) and with the different one (b).
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the region where

self-touching is detected

Figure 8. An example of self-watching view
of the simulated robot in double-touching:
Three ellipsoids with broken curves and one
with the symbols D and D′ are the postures
of the robot arm by which it touches with its
trunk. Although each part labeled by a sym-
bol is corresponding to Fig. 3, the trunk is
supposed to be a plane for the simplicity. The
cross point of the vertical and the horizontal
chain lines indicates the focus of the atten-
tion in vision. The black box indicates the
region where double-touching is detected.

100 times in which the processes of exploration are differ-
ent. Note that only the experimenter knows the desired con-
nection and can determine the matching error. We can see
that learning for binding converged to almost completely
correct one-to-one mapping with small variance. There-
fore, we may conclude that the robot can robustly find the
matched response in different modalities by the anchoring
Hebbian learning rule in a more realistic embodiment.

6 Conclusion

In this paper, we address the issue how to solve the bind-
ing problem in different modalities for body representa-
tion. We propose a method called cross-anchoring Hebbian
learning rule to perform binding by virtue of the morpho-
logical constraints of its human-like configuration in per-
ceiving the self. In the preliminary computer simulations,
we showed that the robot can bind its tactile and visual
sensations through the exploration by the iterations of self-
watching and double-touching.

There are parameters in the proposed learning rule that
determine how much the degree of anchoring is. Since it
should be well selected to obtain the unique association, we
should put a mechanism to adapt it when the system fail to
bind. Topographical constraint caused by the the receptive
fields with continuity that reflects the physical continuity
could be a criteria for adaptation. Furthermore, the robot



(I) 2500 [step] (II) 12500 [step]

(III) 25000 [step] (IV) 100000 [step]

Figure 9. The process of learning connection
between the layers with the same resolution
in the 2-D robot simulation

needs the competence of binding in the case where it learns
multimodal representation of the external objects. Although
we concentrated on the binding problem concerning the
self body in this paper, extending the proposed method for
the binding problem involving tactile sensations of being
touched by others is one of our future work.
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