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WHAT IS THE ”RIGHT” METRIC FOR THE MODELLING OF
FEATURE MAPS IN THE VISUAL CORTEX?

N. MICHAEL MAYER, MINORU ASADA, AND MATTHEW BROWNE

1. Introduction

Spike rates of neurons in the visual cortex depend on the type of visual stimulation.
The specific properties of each neuron are typically investigated by exposing the
subject to a stimulus with a certain set of features, i.e. orientation, position in the
visual field and others. The activity of this neuron is then recorded with respect
to the presented stimulus. Optical imaging experiments show not only that single
neurons show a preference to certain features but also that each point of the cortex
surface is typically activated by a set of specific preferred stimulus features. Thus,
neurons with similar stimulus preferences are grouped together at one small area
on the cortical surface. These preferences change typically continously as a func-
tion over the position of the cortex surface and form a structure which shows a 2
dimensional pattern (”map”) of a certain wavelength. The complete cortical area
roughly covers the whole feature space, i.e. all possible combinations of features[7].

These patterns are the biggest cortical stuctures that might be affected by early ex-
periences and thus, they play a major role in the nurture versus nature discussion.
The patterns partly resemble structures that appear in physical pattern formation
processes, and have been assumed to be a result of a similar process. Hence, the
coverage of the stimulus space is optimized in a learning process that depends on
the stimulus statistics. Therefore, it seems to be plausible to assume that the visual
cortex undergoes an optimization process of two competing optimization criteria,
that are (1) the ”optimal folding” of the map into the complete stimulus space
and (2) a ”neighbourhood preservation”. Optimal folding means that there is for
every point in the stimulus space, a corresponding point on the map that is as close
as possible (in the sense of distance measure). Neighbourhood preservation means
that the developmental process results in neighboring neurons that prefer similar
stimuli, i.e. show a set of preferred features that is similar. (For review for models
of the visual cortex please consult [6].)

Both criteria, optimal coverage and neighbourhood preservation are dependent on
assumptions of the underlying metrics of the stimulus space, its features respec-
tively. In previous works consequences of modifications of these assumptions[1, 2]
were investigated. It could be shown that the exact design of the metrics had a
crucial impact on the patterns that finally emerged as most stable after a prolonged
formation process.

There are indications that such a prolonged developmental process actually takes
place. One indication results from the analysis of singular points on the map of
orientation preference [8]. The orientation maps from certain species show a lower
density of singular points (”pinwheels”) than one would expect if the maps would
remain in an initial state that emerged spontaneously from a dynamic instability.
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In the following section we present a model that is intended to resemble the cortical
areas 17, 18 alias V1 and V2. Presently it is reduced to two stimulus features that
is the position of the stimulus in the visual field and its orientation. We briefly
outline this approach and report the results.

In this initial approach the metric explicitly relates to the stimulus set. This seems
improvable for several reasons. Neurons experience only activity statistics, that are
spike rates and the spike timings of connected neurons . Thus, the spike-encoded
information from afferent pathways and laterally connected neurons is the only cri-
terium for the local optimization process. In this way a statistical model of the
stimulus set and a metric that is derived from these statistical measures may be
useful to provide a means to design new models of the process, and – more interest-
ingly – to analyze if indeed maps that have been found in animals show signatures
of an optimization prozess of any kind.

Some preliminary considerations of this point are outlined in the discussion section
of this work. We also discuss in which way the symmetries derived for the previous
approach might apply to the new type of approach.

2. A feature metric based on symmetry considerations

The following considerations describe the derivation of a metric between points in
the feature space. Our intention is two fold: On one hand the considerations are
the bases of a model that results in a non-trivial example of how the formation of
feature maps can actually be affected by a metric, and its variation. On the other
hand the same considerations may be useful to derive a model that uses stimuli
distributions, and in this way simplify the calculation of a metric of those.

In the following we assume a four dimensional feature space: {x, y, z1 = |z| sin(2φ),
z2 = |z| cos(2φ)}, where x and y indicate the the position of the stimulus in the
visual field, φ the orientation of the stimulus and |z| the orientation strength. Since
orientation is a π-periodic feature the argument to the sine is multiplied by a factor
of two. The used encoding of the orientation strength and orientation yields a valid
mapping that is topologically correct, i.e. for zero orientation strength |z| = 0 all
preferred orientations coincide to one coordinate (z1 = z2 = 0), all orientations are
in the neighborhood of zero orientation strength.

A Riemannian metric should yield a 4× 4 metric tensor gij . In the following sym-
metric operations are outlined for which we assume the metric should be invariant.

• The tensor should be invariant under translations of x and y. This assump-
tion is almost true in the part of the visual cortex that corresponds to foveal
vision. Further, the change of the size of the projection is much slower than
the typical wavelength of the pattern of the preferred orientation. Thus,
for a simple approach we are going to neglect it.

• The metrics should be invariant against the inversion of the position differ-
ence (dx, dy) between two stimuli.

• The metrics should be invariant under the combined rotation of position
x, y and orientation preference z1, z2.

It should be noted that the number of parameter functions can be further reduced
by regauging (redefining) the orientation strength.
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In the following we use Riemannian metrics that all obey the above mentioned
symmetry constraints; the metric tensors are the following:

1 + αz1 αz2 0 0
αz2 1− αz1 0 0
0 0 1 0
0 0 0 1


The parameter α modulates a coupling strength between the feature of orientation
preference and retinal position. Experimental results indicate [10] that the two
features are indeed coupled in maps of the visual cortex. In addition, in most high-
dimensional models (e.g. [9]) this kind of coupling appears implicitly. The same
kind of coupling has also been considered in [4].

The metric has been built into a modified 2 dimensional elastic net approach were
the energy function

E = −A

〈
log

(∑
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exp
(
−d2 (v,wi)

2σ2

))〉
v∈V

+ B
∑
i∈N

∑
|i−j|=1

d2 (wi,wj)

was optimized by gradient descent. N was a periodic two dimensional grid and
V the simulus space. The parameters A and B control the stiffness of the map
and were chosen to keep the dynamics in state that showed only weak orientation
preferences [2].
In this model each node of the net corresponds to a point of the cortex. The topol-
ogy of the cortex is reflected by the topology of the network. For the simulations
only the square components of the Taylor series of the metrics were used. The
parameter α was kept constant during each simulation; several values of α were
tested. The results are depicted in Fig. 1. For a metric with no coupling (α = 0 )
we get a map of rolls that is completely free of singular points, whereas for a map
with this coupling shows a regular pattern containing between 3 and 4 singularities
per wavelength.

Similar investigations have been done with a modified Swift-Hohenberg model[11].
The results from the modified Swift-Hohenberg model show similar patterns as in
the elastic net approach.

Figure 1. Left: Color code for the orientation preference. Middle:
Map evolving after a long learning period from a metric with α = 0

. Right: A metric evlovling from a metric with α = 0.3 Both approaches were
doen with a modified elastic net approach [2].

3. Discussion and Outlook: Cross Modal Maps

The aim of our methods is to find the general principle of the formation process
in various cortical areas, whose nature is unclear so far. The above outlined work
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briefly summarized work that investigated a simplified set of exemplary metrics.
Further the work reported numerical results from which we see that the structure
of a feature map depends on the metric that describes a distance measure between
two sets of features. Cortical neurons obviously use some local, statistical method
for the individual learning process, thus a similar method seems appropriate for the
adaptation process of the each node of the model.
A different field of interest for maps of feature spaces are cross modal maps. Cross
modal maps are used for example in robotics to organize combined representations
of several sensory inputs. They can be used for models of proprioceptive learning.
The introduction of an arbitrary mixed feature space of two senses can be replaced
by a more general unsupervised learning process. For this purpose a statistic ap-
proach seems to be appropriate.

Acknowledgements

N.M.M. thanks J. Michael Herrmann for helpful discussions.

References

[1] A cortical interpretation of ASSOMs, NM. Mayer, JM. Herrmann T. Geisel, Proc. of Intl.
Conf. on Artificial Neural Networks (ICANN) 1998, 2 pp. 961-966

[2] The Impact of Receptive Field Shape on Cortical Map Formation, NM. Mayer, JM. Herrmann,
T. Geisel, Proceedings of the Intl. Conf. on Neural Information Processing (ICONIP) 2000,
pp. 1443-1448

[3] Curved feature metrices in models of visual cortex, NM. Mayer, JM. Herrmann, T. Geisel,
Neurocomputing 44-46 (C) (2002) 533 – 539

[4] Symmetry Induced Coupling of Cortical Feature Maps, PJ. Thomas, JD. Cowan, PRL 92
18810 (2003)

[5] Body Scheme Acquisition by Cross Modal Map Learning among Tactile, Visual and Proprio-
ceptive Spaces, Y. Yoshikawa, H. Kawanishi, M. Asada, K. Hosoda, In Prince, Christopher G.
and Demiris, Yiannis and Marom, Yuval and Kozima, Hideki and Balkenius, Christian, Eds.
Proceedings Second International Workshop on Epigenetic Robotics: Modeling Cognitive
Development in Robotic Systems 94, pages pp. 181-184, Edinburgh, Scotland (2002)

[6] N. V. Swindale (1996). The development of topography in the visual cortex: A review of
models. Network 7, 161-247.

[7] N. V. Swindale,D. Shoham,A. Grinvald, T. Bonhoeffer, M. Hübener (2000). Optimizing cov-
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