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Abstract— A robot should have softness and many sensors
to manipulate an object dexterously and to adapt various
environments. However, many existing schemes that a designer
calibrates the sensor output to the world coordinate frame
are difficult to adapt for such the robot. This paper proposes
a learning mechanism for a robot hand which consists of
anthropomorphic fingertips. The sensor for the fingertip is
difficult to calibrate because the sensor receptors are embedded
randomly in the soft material. The effectiveness of the proposed
mechanism is demonstrated by an experiment that the robot
picks up an unknown weight object.

Index Terms— grasping, object manipulation, distributed sen-
sor, soft finger, anthropomorphic finger

I. INTRODUCTION

Many existing control schemes for the robot hand are
designed with respect to the world coordinate frame, and
outputs of the sensors are calibrated with the frame by the
designer [1], [2], [3]. These robots achieve a given task by
using models of the robot and the object described with the
frame. Therefore, the robot and the object have to be simple
enough to be easily modeled by simple calibration. For this
purpose, the designer has to place the sensor in the exact
position and orientation. However, the robot using the scheme
can not adapt to unknown environments which the designer
did not suppose. Furthermore, the robot using the scheme is
affected by calibration errors and disturbances.

If the sensor placement for the robot is fully controlled, it
may not be able to sense the information that is essential for
the task but that the designer has not expected. Therefore,
dexterity of the existing robot is not sufficient because of
lack of sensing ability. One way to avoid such designer’s
bias and limitation of sensing is to embed as many receptors
as possible into the robot randomly. Our previous work [4]
show that the soft fingertip which contains many tactile
receptors has high sensing ability. However, the robot which
has softness and many sensors is difficult to calibrate the
sensors and to build a controller. Therefore, the task and the
sensor output must be represented in a sensor space which
is defined by the robot’s self.

In [5], the output of the vision and force sensor were
represented in the sensor space of the robot, and the robot
achieved manipulating an object. Hosoda et al. [6] produced
an anthropomorphic fingertip whose tactile receptors are
randomly distributed in and on the soft material. Further-
more, a neural network for the representation of slippage
utilizing the anthropomorphic fingertip and a vision sensor
was proposed. The context of the given task is, however,
not considered in the mechanism. Additionally, Hakozaki
el al. [7] proposed artificial skin in which many tactile
receptors are embedded randomly, what they call telemetric
skin. However, they proposed only the structure and did not
propose the control architecture to utilize it. Yamada et al. [8]
proposed a soft finger whose tactile receptors are embedded
regularly, and which can grasp the unknown weight and a
friction coefficient object by detecting the incipient slippage.
However, the designer decided the mechanisms for detecting
the incipient slippage and for controlling the grasping force.

This paper proposes a learning mechanism to utilize the
anthropomorphic fingertips through a task context, that is, a
grasping task, together with a vision sensor. The mechanism
finds the correlation between the output of the vision and the
tactile sensors, and realizes grasping. Experimental results to
pick up an object are shown to demonstrate the effectiveness
of the proposed mechanism.

The remainder of this paper is organized as follows. First,
the design of the anthropomorphic soft fingertip is introduced.
The fingertip consists of two silicone rubber layers of differ-
ent hardness containing two kinds of randomly distributed
receptors. Then, the learning mechanism for grasping is
proposed. It learns the correlation among the output of the
sensors and a motor command by Hebbian learning. Finally,
experimental results are shown to validate capability of the
proposed mechanism.

II. ANTHROPOMORPHIC SOFT FINGERTIP

Fig. 1 shows a cross sectional view of the developed
anthropomorphic soft fingertip. The fingertip has two layers
made of the different hardness of silicone rubber: the outer
layer is harder than the inner layer. A rod is inserted at the
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Fig. 1. A cross sectional view of the developed anthropomorphic fingertip

center of the fingertip to play a role of a bone. Strain gauges
and PVDF (polyvinylidene fluoride) films that sense strain
and velocity of strain are embedded in both layers as tactile
receptors. A developed soft fingertip is shown in Fig. 2. Its
diameter and length are 25 mm and 55 mm, respectively. The
fingertip has twenty-four receptors; six strain gauges and six
PVDF films are embedded in the inner layer, and also the
same number of the strain gauges and the PVDF films are
embedded in the outer layer.

Since the receptors are embedded randomly, the same
kind of receptors embedded in the different positions may
sense different kinds of tactile information. A strain gauge
embedded near the surface of the skin is expected to sense
the local static strain between the skin and the object surface
whereas the strain gauge embedded near the rod is expected
to sense the total force exerted on the finger and is expected
to be insensitive to the local texture of the object. A PVDF
film is expected to sense the strain velocity, which means
that it is more sensitive to the transient or small strain (or
stick slip) than the strain gauge. The silicone rubber between
two PVDF films is expected to act like a low-pass filter;
therefore, the difference between the signals is expected to
represent the local stick slip phenomena. Additionally, our
previous work [4] shows that the fingertip has high sensing
ability by discriminating between the objects.

III. LEARNING MECHANISM FOR GRASPING

The calibration for the anthropomorphic fingertip is dif-
ficult because the fingertip is made of soft material and
contains randomly distributed tactile receptors. Therefore, the
robot has to learn the meaning of the sensor output instead
of the calibration.

In this paper, the robot hand with a vision sensor iterates
picking up an object, and learns the correlation among the
tactile sensors, the vision sensor, and a motor command.
From this learning, the robot acquires behavior for picking
up the object by minimum grasping force. Experimental

Fig. 2. A photo of the anthropomorphic soft fingertip

conditions for the learning mechanism are as follows: 1)
weight and a friction coefficient of the object are unknown,
2) the grasping force is increased or decreased discretely by a
sign of the controller output, and 3) the vision sensor observes
motion between the object and the robot, then it outputs three
states: “picking up success”, “stopping the robot hand”, and
“picking up failure.”

Fig. 3 shows a block diagram of a control system for
the robot. Details of neural networks which consists of a
sensor network and a motor network are shown in Fig. 4. The
sensor network learns the correlation between the output of
the tactile sensor and the vision sensor, and outputs a state of
the grasping object. The motor network converts the output
of the sensor network to the motor command.

Details of the sensor network in Fig.4 is as follows. The
sensor network learns the correlation between the output of
the vision and the tactile sensor by Hebbian learning. The
output of each strain gauge is normalized by the maximum
value over time and is given to the strain gauge node sn. sn

ranges from −1 to 1. Furthermore, the output of each PVDF
film is also normalized by the maximum value over time, and
the value of 1 or 0 are given to the PVDF film node pk if the
normalized value is over or under a threshold, respectively.
The values of −1, 0, and 1 are given to the vision node v and
denote “picking up failure”, “stopping the robot hand”, and
“picking up success”, respectively. The output of the sensor
network is calculated by following equations.

Sp =
∑

k

pk wp
k + v (1)

Ss =
∑

n

sn ws
n + Sp (2)
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Fig. 3. A block diagram of robot hand controller
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Fig. 4. A neural network for grasping behavior

where, wp
k denotes the connection weight between the PVDF

film node and the vision node, and ws
n denotes the connection

weight between the strain gauge node and the PVDF–vision
node. The initial value of wp

k and ws
n are set to zero. The

connection weights of the sensor network are updated by
following equations.

Sa =
∑

n

sa
nws

n (3)

∆wp
k = α pk v (4)

∆ws
n = β sn Sp(1 − Sa) (5)

where, α and β denote learning rates. By (4), the PVDF–
vision node learns the correlation between the output of the
PVDF film and the vision sensor when the fingertip slips
on the object because the PVDF film responds to velocity
of strain. In (3), sa

n is the value of the strain gauge node
at instant of picking up the object, and ws

n is the current
connection weight. The connection weight ws

n is updated that
Sa approximates 1 in (5). In the equation, the constant value
of 1 is the same value as the PVDF–vision node Sp when the

robot achieves picking up the object. Therefore, the strain–
vision node learns minimum grasping force for picking up
the object by (3) and (5). Thus, the tactile sensors play the
same role as the vision sensor by using this neural network.
Additionally, after the learning, the sensor network outputs
the value of 1 when the robot achieves picking up the object.
When the grasping force is insufficient, the network outputs
less than 1.

The motor network in Fig.4 learns the correlation between
the output of the sensor network Ss and the motor command
m by Hebbian learning. Thus, the network outputs the motor
command for controlling the grasping force by subtracting
Ss from the desired value d. The desired value d is the same
value as the strain-vision node Ss when the robot achieves
picking up the object: the value of d equals 1. The motor
command m denotes increasing or decreasing the grasping
force, and the value of −1 or 1 are given to m. This value is
given at learning phase only, and the value equals 0 at after
learning. An output of this network Sm is calculated by a
following equation.

Sm = (d − Ss)wv + m (6)

where, wv denotes the connection weight between the output
of the sensor network and the motor node. The initial value
of wv is set to zero. The connection weight of the motor
network is updated by a following equation.

∆wv = γ Ss m (7)

where, γ denotes a learning rate. Consequently, the robot
acquires grasping behavior that adapts to slippage by using
the sensor network and the motor network.

IV. EXPERIMENT

To demonstrate capability of the proposed learning mech-
anism, an experiment that the robot picks up an object is
shown. The object is a plastic cup that its weight and a
friction coefficient are unknown. The robot autonomously
acquires a motor command and the minimum grasping force
to pick up the object. Furthermore, the experiment shows
that the robot can deal with the heavier object by adapting
to slippage.

A. Experimental equipment

Fig. 5 and 6 show an experimental equipment. The devel-
oped fingertips are mounted at the end of a robot hand that
has 4 DOFs by two fingers (Fig. 5). However, the hand is
used for 1 DOF gripper because the experiment demonstrates
controlling the grasping force. Additionally, because of limit
of the number of A/D converter channels, the tactile receptors
in one side fingertip are used for the tactile sensor. The output
of the strain gauges and the PVDF films are amplified and
fed to a host computer via an A/D converter. A robot hand
system contains the robot hand, a robot arm, and a video



Fig. 5. The anthropomorphic fingertips are mounted at end of robot fingers.

Fig. 6. A robot system consists of a robot arm, a robot hand with
anthropomorphic fingertips, and a video camera.

camera (Fig. 6). The object is picked up by the robot arm,
and the camera observes the motion between the object and
the arm.

An example of the output of the vision and the tactile
sensor when the robot hand picks up the object is shown
in Fig. 7. These curves in the figure are part of the output
of the tactile sensors that respond largely to a contact. In the
example experiment, the grasping force and the robot arm are
controlled by a designer. The experimental procedure consists
of two phases. First, the robot hand is moved to a lower
position of the object. In this phase, the fingertips do not
touch the object. Then, the object is picked up by increasing
the grasping force and moving the robot hand to the upper
position.
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Fig. 7. An example of sensor output when the fingertip picks up the object

In Fig. 7, the fingertip does not touch the object at
the beginning of the experiment, and the robot hand starts
moving to the upper position when the fingertip touches the
object. The fingertip touches the object at about 0.9 s. Until
about 1.8 s, the fingertip slips on the surface of the object
because the grasping force is insufficient. Then, the grasping
force becomes sufficient, and the object is picked up until
about 5.6 s. This figure shows three characteristics of the
sensors: 1) the vision sensor outputs states of the grasping
object, 2) the strain gauge responds to grasping force, and
3) the PVDF film responds to transition of strain such as an
instant of contact or slippage.

B. Learning procedure

The developed fingertip has twelve strain gauges and the
same number of the PVDF films. However, some suitable
receptors to achieve the task are selected by the designer:
the strain gauges that maximum output is more than 1.5 V
are selected, and the PVDF film #3 which largely responds
to slippage is selected.

The learning procedure consists of three phases.
1) The robot hand is located at a bottom of the object. At

this time, the fingertips do not touch the object.
2) The grasping force is increased, and the robot hand

moves to the upper position. In this learning phase, the
grasping force is increased regardless of the output of
the motor network Sm.

3) The connection weights are updated by the output of
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Fig. 8. Time courses of the sensor output and the connection weights at
learning phase

the tactile sensors, the vision sensor, and the motor
command.

4) The above three phases are iterated.
Additionally, the robot arm is controlled by the designer.
The connection weights ws

n, wp
k, and wv are reinforced by

this procedure, then the neural network acquires the grasping
force control to pick up the object. At the phase 2), the
grasping force is increased regardless of the output of the
motor network Sm. The reason is that the output of the motor
network equals 0 at the beginning of the learning because
the initial connection weights equal 0, then the grasping
force does not increase. Therefore, to begin updating the
connection weights, the motor command except the value of
0 is needed. Additionally, because of the linear structure, the
neural network can output the motor command for decreasing
the grasping force even if the network learned a situation of
increasing the grasping force only.

Fig. 8 shows time courses of the sensor output and some
connection weights at the learning phase. The robot does
not pick up the object while the vision sensor outputs the
negative value. In this state, the fingertip slips on the surface
of the object because of the insufficient grasping force. When
the grasping force becomes sufficient, the robot picks up
the object, and the vision sensor outputs the positive value.
Therefore, the strain–vision node learns minimum grasping
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Fig. 9. Time courses of the sensor output and the connection weights at
after learning

force by (5). On the other hand, the large signal of the PVDF
film occurs when the vision sensor outputs the negative value,
and the PVDF film does not output the large signal when
the vision sensor outputs the positive value. Therefore, the
PVDF–vision node learns slippage by (4).

Because of linear structure, the network can not learn the
exclusive state that the robot fails and succeeds in picking up
the object. Therefore, in the bottom of Fig. 8, the connection
weights ws

3 and ws
5 at first trial are not stable by the output

of the vision sensor. However, the connection weights are
expected to converge because the learning at the failing in
picking up the object is almost ignored. The reasons why the
learning is almost ignored are as follows: 1) the number of
learning at succeeding in picking up the object is more than
failing in picking up one, 2) the updating value ∆ws

n in (5)
at failing in picking up the object is small because the output
of the strain gauge is small by the insufficient grasping force,
and 3) the updating value ∆ws

n becomes small step by step
because (1 − Sa) in (5) is approximated 0 by updating the
connection weights ws

n. Therefore, the connection weights
of the strain–vision node ws

n are converged after some trials.
In the figure, the connection weights are converged by five
trials.



C. Picking up the object at after learning

An experiment demonstrates that the robot hand using the
learned neural network can pick up a cup as the object
by minimum grasping force, and that the robot can deal
with the heavier object. The procedure of this experiment
is the same as the procedure in the learning phase excluding
that the fingertip touches the object at the beginning of the
experiment. Furthermore, the vision sensor node v equals 0
at any time to demonstrate that the tactile sensors play a role
of the vision sensor. However, the output of the vision sensor
is recorded for analyzing experimental data. Additionally,
the motor command node m also equals 0. Note that the
connection weights ws

n are updated by the output of the strain
gauge nodes and the PVDF film nodes even if the vision node
equals 0.

Fig. 9 shows time courses of the output of the vision
sensor, the strain gauges, the PVDF film, and the connection
weights ws

n. From this figure, the output of each strain gauge
until 12 s is smaller than the learning phase’s output in Fig.
8. In other words, the robot grasps the object by small force.
Then, the weight of the object becomes heavy by pouring
water into the cup at 12 to 14 s. The PVDF film outputs large
signal at this time because of impact of pouring water. After
pouring water, the slippage between the cup and the fingertip
occurs because of the insufficient grasping force. The PVDF
film responds to the slippage, and the PVDF–vision node
outputs the state of the picking up failure even if the vision
node equals 0. It means that the PVDF film plays a role of the
vision sensor. Then, the connection weights ws

n are updated
by only the output of the tactile sensors. Consequently, the
slippage between the fingertip and the object is stopped by
increasing the grasping force. This result shows that the robot
can adapt to heavier weight by the proposed mechanism.

V. DISCUSSION AND FUTURE WORKS

In this paper, the learning mechanism for the fingertip
which has the randomly distributed receptors was proposed.
The learning mechanism was to find the correlation among
the output of the sensors and the motor command, and
to realize the grasping. The experiment to demonstrate the
ability of the mechanism showed that the robot can pick up
the unknown weight object through learning, and can deal
with the heavier object.

The tactile sensor of the anthropomorphic fingertip is
similar to human tactile organ which sense various contact
conditions. The receptors of the tactile organ can sense
different properties because of the dynamics of the body
where the receptor is embedded even if the receptors have
similar response characteristic. These receptors can sense
contact force, slippage, or vibration that are meaningful con-
tact information to achieve dexterous manipulation [9], [10].
Therefore, we expect that the robot hand can manipulate the
object dexterously by utilizing the anthropomorphic fingertip

even if the experimental result in this paper only shows the
control of grasping force.

Although the anthropomorphic fingertip has twenty-four
tactile receptors, in the experiment, some suitable receptors to
achieve the task are selected by the designer. The autonomous
robot has to select suitable receptors by itself. The experiment
shows that the robot controls grasping force only. The robot
has to achieve complex tasks to demonstrate the capability of
the fingertip. Additionally, the fingertip can not discriminate
between the contact and the slippage because the PVDF film
senses the velocity of strain. These are future works.
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