
Self Task Decomposition for Modular Learning
System through Interpretation of Instruction by

Coach

Yasutake Takahashi1,2, Tomoki Nishi1, and Minoru Asada1,2

1 Dept. of Adaptive Machine Systems, Graduate School of Engineering,
2 Handai Frontier Research Center,

Osaka University
Yamadagaoka 2-1, Suita, Osaka, 565-0871, Japan

{yasutake, nishi, asada}@er.ams.eng.osaka-u.ac.jp
http://www.er.ams.eng.osaka-u.ac.jp

Abstract. One of the most formidable issues of RL application to real
robot tasks is how to find a suitable state space, and this has been
much more serious since recent robots tends to have more sensors and
the environment including other robots becomes more complicated. In
order to cope with the issue, this paper presents a method of self task
decomposition for modular learning system based on self-interpretation
of instructions given by a coach. The proposed method is applied to a
simple soccer situation in the context of RoboCup.

1 Introduction

Reinforcement learning (hereafter, RL) is an attractive method for robot be-
havior acquisition with little or no a priori knowledge and higher capability of
reactive and adaptive behaviors [1, 2]. However, a simple and straightforward ap-
plication of RL methods to real robot tasks is difficult because of the enormous
time for exploration that scales exponentially with the size of the state/action
space. The recent robots tend to have many kinds of sensors like normal and
omni-vision systems, touch sensors, infrared range sensors, and so on. They can
receive a variety of information from these sensors, especially vision sensors. This
fact indicates that the difficulty of RL application to real robot tasks becomes
more serious.

Fortunately, a long time-scale behavior might often be decomposed into a
sequence of simple behaviors in general, and therefore, the search space can be
divided into smaller ones. In the existing studies, however, task decomposition
and behavior switching procedures are given by the designers (ex. [1, 3, 4]). Oth-
ers adopt the heuristics or the assumption that are not realistic from the view
point of real robot application (ex. [5–8]).

When we develop a real robot that learns various behaviors in its life, it
seems reasonable that a human instructs or shows some example behaviors to

2 Yasutake Takahashi et al.

the robot to accelerate the learning before it starts to learn (ex. [9, 10]). This idea
was applied to a monolithic learning module. To cope with more complicated
tasks, this idea can be extended to a multi-module learning system. That is, the
instruction will help a learner to find useful subtasks.

In this paper, we introduce an idea that the capability of a learning mod-
ule defines the size of subtasks. We assume that each module can maintain a
few number of state variables and this assumption is reasonable for real robot
applications. Then, the system decomposes a long-term task into short-term sub-
tasks with self-interpretation of coach instructions so that one learning module
with limited computational resources can acquire a purposive behavior for one
of these subtasks. We show experimental results with much more sensors such
as normal and omni-vision systems and 8 directions infrared range sensors.

2 Basic Idea

Fig. 1. A coach gives instructions to a
learner Fig. 2. The learner follows the instructions

and finds basic behaviors by itself

There are a learner and a coach in a simple soccer situation (Fig. 1). The
coach has a priori knowledge of a task to be played by the learner while s/he
does not have any idea about the system of the learner. On the other hand,
the learner just follows the instructions without any knowledge of the task.
After some instructions given by a coach, the learner decomposes the whole
task into a sequence of subtasks, acquires a behavior for each subtask, and
coordinates these behaviors to accomplish the task by itself . In Fig. 1, the coach
instructs an shooting a ball into a yellow goal with obstacle avoidance. Fig. 2
shows an example that the system decomposes this task into three subtasks
and assigns them to three modules that maintain state spaces consist of ball
variables, opponent and goal ones, and goal ones, respectively.

Fig. 3 show a rough sketch of the idea of the task decomposition procedure.
The top of the Fig. 3 shows a monolithic state space that consists of all state
variables (x1, x2, · · · , xn). The red lines indicate sequences of state value during
the given instructions. As we assume beforehand, the system cannot have such
a huge state space, then, decomposes the state space into subspaces that consist
of a few state variables. The system regards that the ends of the instructions
represent goal states of the given task. It checks all subspaces and selects one

Lecture Notes in Computer Science 3

2 x

1x

3x

4x

5x

nx

Instruction

1x

2x

2x

4x

1x

3x

n-1x

nx

Goal State

Module Available AreaNew Subgoal
Candidate

Subgoal
Candidate

2 x

1x

3x

4x

5x

nx

Subgoal
Candidate

1x

2x

1x

3x

n-1x

nx

2x

4x
Subgoal

Module Avairable AreaNew Subgoal
Candidate

Gtask

Gsub

State Space Decomposition

Module Available Area

2 x

1x

3x

4x

5x

nx

Subgoal
Candidate

Module Available Area

State Space Decomposition

Fig. 3. Rough sketch of the idea of task decomposition procedure

4 Yasutake Takahashi et al.

in which the most ends of the instruction reach a certain area (Gtask in Fig. 3).
The system regards this area as the subgoal state of a subtask which is a part
of the given long-term task. The steps of the procedure are as follows:

1. find module unavailable areas in the instructions and regard them as un-
known subtask.

2. assign a new learning module.
(a) list up subgoal candidates for the unknown subtasks on the whole state

space.
(b) decompose the state space into subspaces that consist of a few state

variables.
(c) check all subspaces and select one in which the subgoal candidates reach

a certain area best (Gsub in Fig. 3).
(d) generate another learning module with the selected subspace as a state

space and the certain area as the goal state.
3. check the areas where the assigned modules are available.
4. exit if the generated modules cover all segments of instructed behaviors. Else

goto 1.

3 Robot, Tasks, and assumption

Fig. 4. A real robot
Fig. 5. Captured camera images

Fig. 4 shows a mobile robot we have designed and built. The robot has a
normal camera in front of body, an omni-directional camera on the top, and infra
red distance sensors around the body. Fig. 5 show the images of both cameras.
A simple color image processing is applied to detect the ball, the goal, and an
opponent in the image in real-time (every 33ms). The robot has also 8 directions
infrared range sensors. The robot has totally 39 candidates of state variables.
The details of the candidates are eliminated because of space limitations. The
mobile platform is an omni-directional vehicle (any translation and rotation on
the plane). The tasks for this robot are chasing a ball, navigating on the field,
shooting a ball into the goal, and so on. We assume that the given task has

Lecture Notes in Computer Science 5

some absorbing goals, that is, the tasks are accomplished if the robot reaches to
certain areas in state spaces which consist of a few state variables.

4 Availability Evaluation and New Learning Module
Assignment

Fig. 6. Sketch of state value function and
action value

AE

AEth

t

an existing learning module is available

new learning modules are needed

ignore

Fig. 7. Availability identification during
the given sample behavior

The learner needs to check the availability of learned behaviors that help
to accomplish the task by itself because the coach neither knows what kind of
behavior the learner has already acquired nor shows perfect example behaviors
from the learner’s viewpoint. The learner should suppose a module as valid if
it accomplishes the subtask even if the greedy policy seems different from the
example behavior. Now, we introduce AE in order to evaluate how suitable the
module’s policy is to the subtask:

AE(s, ae) =
Q(s, ae) − mina′ Q(s, a′)

maxa′ Q(s, a′) − mina′ Q(s, a′)
, (1)

where ae indicates the action taken in the instructed example behavior. AE
becomes larger if ae leads to the goal state of the module while it becomes smaller
if ae leaves from the goal state (see Fig. 6). Then, we prepare a threshold AEth,
and the learner evaluates the module as valid for a period if AE > AEth. If
there are modules whose AE exceeds the threshold AEth, the learner selects the
module which keeps AE > AEth for longest period among the modules (see Fig.
7). In Fig. 3, ”Module Available Area” indicates the one in which AE > AEth.

If there is no module which has AE > AEth for a period, the learner creates
a new module which will be assigned to the subtask (see procedure 2 in 2). To
assign a new module to such a subtask, the learner identifies the state space and

6 Yasutake Takahashi et al.

the goal state. The system follow the two steps to select an appropriate state
space and the goal state for the subtask:

– selection of one state variable that specifies the goal state, and
– construction of a state space including the selected state variable.

In order to find one state variable that specifies the goal state best, the system
lines up the candidates for a goal region in term of state variables. On the other
hand, in order to select another state variable, the system evaluates performance
of Q value estimation.

The details of the procedure are eliminated because of space limitations.

5 Experiments

Fig. 8. Examples of Instructed behaviors

We have instructed the robot from a simple behavior (ball chasing) to a
complicated one (shooting a ball with obstacle avoidance) in [11], however, there
is a criticism that the step-by-step instruction implies task decomposition to the
robot. Therefore we adopt only shooting behavior for the task decomposition
and the coordination. Fig. 8 shows four examples of the behaviors instructed by
the coach. The total number of instruction is 21 for this experiment.

According to the learning procedure, the system produced four modules for
the instructed behaviors. The modules are LM1(Apb, Xpb), LM2(θog), LM3(Yob, Xob),
and LM4(Aob, θob). For example LM1(Apb, Xpb) indicates that the modules has
a state space that consists of the area of ball on the normal camera image (Aob)
and the x position of the ball on the normal camera image (Xpb). Fig. 9 shows
sequences of the selected module, availability evaluations and goal state activa-
tions of modules through an instruction.

Fig. 11 shows the learned behaviors. The start positions of the behaviors are
the same ones of the instructions for comparison. The trajectories of learned
behaviors are different from the instructed behaviors. This fact indicates that
the learner recognizes the subtasks based on its own modules, understands the
objectives of the subtasks, and executes appropriate actions for them.

Lecture Notes in Computer Science 7

 0

 0.5

 1

 0 50 100 150 200 250 300 350
Step

 0.5

 0

 1

go
al

 s
ta

te
 a

ct
iv

at
io

n
A

E

LM4

LM3

LM2

LM1

Fig. 9. Sequences of the selected module, availability evaluations and goal state acti-
vations of modules through an instruction

Fig. 10. Acquired hierarchy for the shooting behavior

6 Conclusion

We proposed a hierarchical multi-module learning system based on self-interpretation
of instructions given by a coach. We applied the proposed method to our robot
and showed results for a simple soccer situation in the context of RoboCup.

References

1. J. H. Connell and S. Mahadevan, ROBOT LEARNING. Kluwer Academic Pub-
lishers, 1993.

2. M. Asada, S. Noda, S. Tawaratumida, and K. Hosoda, “Purposive behavior acqui-
sition for a real robot by vision-based reinforcement learning,” Machine Learning,
vol. 23, pp. 279–303, 1996.

3. P. Stone and M. Veloso, “Layered approach to learning client behaviors in the
robocup soccer server,” Applied Artificial Intelligence, vol. 12, no. 2-3, 1998.

4. P. Stone and M. Veloso, “Team-partitioned, opaque-transition reinforcement learn-
ing,” in RoboCup-98: Robo Soccer World Cup II (M. Asada and H. Kitano, eds.),
pp. 261–272, Springer Verlag, Berlin, 1999.

8 Yasutake Takahashi et al.

Fig. 11. Acquired behaviors for shooting task

5. B. L. Digney, “Emergent hierarchical control structures: Learning reac-
tive/hierarchical relationships in reinforcement environments,” in From animals
to animats 4: Proceedings of The fourth conference on the Simulation of Adaptive
Behavior: SAB 96 (P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W.
Wilson, eds.), pp. 363–372, The MIT Press, 1996.

6. B. L. Digney, “Learning hierarchical control structures for multiple tasks and
changing environments,” in From animals to animats 5: Proceedings of The fifth
conference on the Simulation of Adaptive Behavior: SAB 98 (R. Pfeifer, B. Blum-
berg, J.-A. Meyer, and S. W. Wilson, eds.), pp. 321–330, The MIT Press, 1998.

7. B. Hengst, “Generating hierarchical structure in reinforcement learning from state
variables,” in 6th Pacific Rim International Conference on Artificial Intelligence
(PRICAI 2000) (R. Mizoguchi and J. K. Slaney, eds.), vol. 1886 of Lecture Notes
in Computer Science, Springer, 2000.

8. B. Hengst, “Discovering hierarchy in reinforcement learning with HEXQ,” in
Proceedings of the Nineteenth International Conference on Machine Learning
(ICML02), pp. 243–250, 2002.

9. S. D. Whitehead, “Complexity and cooperation in q-learning,” in Proceedings
Eighth International Workshop on Machine Learning (ML91), pp. 363–367, 1991.

10. M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Vision-based reinforce-
ment learning for purposive behavior acquisition,” in Proc. of IEEE Int. Conf. on
Robotics and Automation, pp. 146–153, 1995.

11. Y. Takahashi, K. Hikita, and M. Asada, “Incremental purposive behavior acqui-
sition based on self-interpretation of instructions by coach,” in Proceedings of
the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 686–693, Oct 2003.

