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Abstract— Existing reinforcement learning approaches have
been suffering from the policy alternation of others in multi-
agent dynamic environments. A typical example is the case
of RoboCup competitions because other agent behaviors may
cause sudden changes in state transition probabilities in which
constancy is needed for the learning to converge. The keys for
simultaneous learning to acquire competitive behaviors in such
an environment are

• a modular learning system for adaptation to the policy
alternation of others; and

• an introduction of macro actions for simultaneous learning
to reduce the search space.

This paper presents a method of modular learning in a multi-
agent environment in which the learning agents can simul-
taneously learn their behaviors and adapt themselves to the
situations as a consequence of the others’ behaviors.

Index Terms— reinforcement learning, competitive behaviors
acquisition, multi-agent system, modular learning system, si-
multaneous learning, and RoboCup

I. I NTRODUCTION

There have been an increasing number of approaches to
robot behavior acquisition based on reinforcement learning
methods [1], [2]. The conventional approaches require an
assumption that the state transition is caused by an action
of a learning agent so that the learning agent can regard the
state transition probabilities as constant during its learning
period. Therefore, it seems difficult to directly apply the
reinforcement learning method to a multi-agent system be-
cause a policy alteration of other agents may occur which
dynamically changes the state transition probabilities from
the viewpoint of the learning agent. RoboCup provides such
a typical situation, i.e., a highly dynamic, hostile environment
in which agents must obtain purposive behaviors.

There are a number of studies on reinforcement learning
systems in a multi-agent environment. Kuhlmann and Stone
[3] have applied a reinforcement learning system with a
function approximator to the keep-away problem in the
situation of the RoboCup simulation league. In their work,
only the passer learns his policy is to keep the ball away from
the opponents. The other agents (receivers and opponents)
follow fixed policies given by the designer beforehand.

Asada et al. [4] proposed a method that sets a global learn-
ing schedule in which only one agent is specified as a learner
with the rest of the agents having fixed policies. Accordingly,
the method cannot handle the alternation of the opponent’s
policies. Ikenoue et al. [5] showed simultaneous cooperative
behavior acquisition by fixing learners’ policies for a certain
period during the learning process. These studies suggest it
is possible to acquire a reasonable behavior in a multi-agent
environment if the learner can see the environment, including
the other agents, as almost fixed because the others keep their
policies for a certain time. In the case of cooperative behavior
acquisition, neither agent has any reason to change policies
while they continue to acquire positive rewards as a result of
their cooperative behavior with each other. The agents tend
to update their policies gradually so that the state transition
probabilities seem almost fixed from the viewpoint of the
other learning agents.

However, in the case of competitive behavior acquisition
in a multi-agent environment, it is unlikely the agent will
tend to select the action that causes positive rewards for
the opponents but a negative reward for itself. Instead the
punished agent tends to drastically change its policy by
giving a negative reward to its opponents so that it can
acquire a positive reward. This policy alternation causes
dynamic changes in the state transition probabilities from the
viewpoint of the learning agent; therefore, it seems difficult to
directly apply the reinforcement learning method to a multi-
agent system.

A modular learning approach would provide one solution
to this problem. If we can assign multiple learning modules
to different situations respectively, each in which the state
transition probabilities can be regarded as constant, then the
system could demonstrate a reasonable performance. Jacobs
and Jordan [6] proposed a mixture of experts, in which a set
of the expert modules learn and the gating system weights the
output of each expert module for the final system output. This
idea is a very general one having a wide range of applications
(ex. [7], [8], [9], [10], [11]).

We adopt the basic idea of the mixture of experts into the
architecture of behavior acquisition in the multi-agent envi-
ronment. Takahashi et al. [12] have shown preliminary ex-
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perimental results of behavior acquisition in the multi-agent
environment; however, the learning modules were assigned
by the human designer. In this paper, we first show how it is
difficult to directly introduce a multi-module learning system
for even single agent learning in a multi-agent environment
because of its complexity; instead we introduce a simple
learning scheduling which makes it relatively easy to assign
modules automatically. Second, we introduce macro actions
to realize simultaneous learning in multi-agent environments
in which each agent does not need to fix its policy according
to some learning schedule. Elfwing et al. [13] introduced
macro actions to acquire a cooperative behavior with two
real rodent robots. The exploration space with macro actions
becomes much smaller than the one with primitive actions;
therefore, the macro action increases the possibility of creat-
ing cooperative experiences and leads the two agents to find a
reasonable solution in a realistic learning time frame. We also
show the introduction of macro actions enable the agents to
learn competitive behaviors simultaneously. We have applied
the proposed multi-module learning system to soccer robots
which participate in RoboCup competition and demonstrate
the experimental results on computer simulation and real
robot implementation.

II. TASKS AND ASSUMPTION

Fig. 2. A real robot

Fig.1 shows a situation the learning agents are supposed
to encounter. The game is like a three-on-one involving one

Fig. 3. Viewer of simulator

Fig. 4. Adaptive behavior selection based on Multi-module learning system

opponent and three other players. The player nearest to the
ball becomes a passer who passes the ball to one of its
teammates (receivers) while the opponent tries to intercept
it.

Fig. 2 shows a mobile robot we have designed and built.
Fig. 3 shows the viewer of our simulator for our robots
and the environment. The robot has an omni-directional
camera system. A simple color image processing is applied
to detect the ball, the interceptor, and the receivers on the
image in real-time (every 33ms.) The left of Fig. 3 shows
a situation the agent can encounter while the right images
show the simulated ones of the normal and omni vision
systems. The mobile platform is an omni-directional vehicle
(any translation and rotation on the plane.)

III. M ULTI -MODULE LEARNING SYSTEM

A. Basic Idea

The basic idea is that the learning agent could assign
one behavior learning module to one situation which reflects
another agent’s behavior and the learning module would
acquire a purposive behavior under the situation if the agent
can distinguish a number of situations, each in which the state
transition probabilities are almost constant. We introduce a
modular learning approach to realize this idea (Fig. 4). A
module consists of both a learning component that models
the world and an action planner. The whole system follows
these procedures:

• select a model which represents the best estimation
among the modules;



• update the model; and
• calculate action values to accomplish a given task based

on dynamic programming.

As an experimental task, we suppose ball passing with the
possibility of being intercepted by the opponent (Figs. 1
and 3). The problem for the passer (interceptor) here is to
select one model which can most accurately describe the
interceptor’s (passer’s) behavior from the viewpoint of the
agent and then to take an action based on the policy which
is planned with the estimated model.

B. Architecture

Predictor

Planner

Gate

Environments s a

s

Fig. 5. A multi-module learning system

Fig. 5 shows a basic architecture of the proposed system,
i.e., a multi-module reinforcement learning system. Each
module has a forward model (predictor) which represents the
state transition model and a behavior learner (action planner)
which estimates the state-action value function based on the
forward model in a reinforcement learning manner. This idea
of a combination of a forward model and a reinforcement
learning system is similar to the H-DYNA architecture [14]
or MOSAIC [11]. The system selects one module which has
the best estimation of a state transition sequence by activating
a gate signal corresponding to a module while deactivating
the gate signals of other modules; the selected module then
sends action commands based on its policy.

1) Predictor: Each learning module has its own state
transition model. This model estimates the state transition
probability P̂a

ss′ for the triplet of states, actiona, and next
states′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (1)

Each module has a reward modelR̂a
ss′ , too:

R̂a
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2)

We simply store all experiences (sequences of state-action-
next state and reward) to estimate these models.

2) Planner: Now we have the estimated state transition
probabilitiesP̂a

ss′ and the expected rewardŝRa
ss′ , then, an

approximated state-action value functionQ(s, a) for a state
action pairs anda is given by

Q(s, a) =
∑

s′

P̂a
ss′

[
R̂a

ss′ + γ max
a′

Q(s′, a′)
]

, (3)

whereγ is a discount rate.
3) Module Selection for Action Selection:The reliability

of the module becomes larger if the module does better
state transition prediction during a certain period, else it
becomes smaller. We assume the module that does the best
state transition prediction has the best policy against the
current situation because the planner of the module is based
on the model which best describes the situation. In the
proposed architecture, this reliability is used for gating the
action outputs from modules. We calculate an execution-time
reliability execgi of the modulei as follows:

execgi =
0∏

t=−T+1

eλpt
i

wherepi is an occurrence probability of the state transition
from the previous (t−1) state to the current (t) one according
to the modeli, andλ is a scaling factor. TheT indicates a
period (step) in evaluating the reliability of the module; we
setT as 5 in the following experiments. The agent continues
to use the module for a certain period, for example 5 step
or 1 second, after it changes the module in order to avoid
oscillation of the policies.

4) Module Selection for Updating Models:We use an
update-time reliabilityupdategi of the module for updating
modules. The calculation of this reliability contains the future
state transition probabilities:

updategi =
t+T∏

t=t−T

eλpt
i .

IV. B EHAVIORS ACQUISITION UNDERSCHEDULING

As we mentioned in I, first, we show how it is difficult to
directly introduce the proposed multi-module learning system
in the multi-agent system. We introduce a simple learning
scheduling to make it relatively easy to assign modules
automatically.

A. Configuration

The state space is constructed in terms of the centroid of
the ball on the image, the angle between the ball and the
interceptor, and the angles between the ball and the receivers
(see Figs. 12 (a) and (b)). We quantized the ball position
space as 11-by-11 as shown in Fig. 12 (a) and each angle into
8. As a result, the number of states become112×8×8×8 =
61952. The action space is constructed in terms of the desired
three velocity values (xd, yd, wd) to be sent to the motor
controller (Fig. 7). Each value is quantized into three, so the
number of actions is33 = 27. The robot has a pinball-like
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kick device which allows it to automatically kick the ball
whenever the ball comes within the region to be kicked. It
tries to estimate the mapping from sensory information to
appropriate motor commands by the proposed method.

The initial positions of the ball, passer, interceptor, and
receivers are shown in Fig. 1. The opponent has two kinds
of behaviors: it defends the left side or right side. The passer
agent has to estimate which direction the interceptor will
defend and go to the position so as to kick the ball in the
direction the interceptor does not defend. From the viewpoint
of the multi-module learning system, the passer will estimate
which situation of the module is going on and select the
most appropriate module as its behavior. The passer acquires
a positive reward when it approaches the ball and kicks it to
one of the receivers.

B. Learning Scheduling

We prepare a learning schedule composed of three stages
to show its validity. The opponent fixes its defending policy
as a right-side block at the first stage. After 250 trials, the
opponent changes the policy to block the left side at the
second stage and continues this for another 250 trials. Finally,
the opponent changes the defending policy randomly after
one trial.

C. Simulation Result

We have applied the method to a learning agent and
compared it with only one learning module. We have also
compared the performances between the methods with and
without the learning scheduling. Fig. 8 shows the success

rates of those during the learning process. Success indicates
the learning agent successfully kicked the ball without in-
terception by the opponent. The success rate indicates the
number of successes in the last 50 trials. The “mono. module”
in the figure indicates a “monolithic module” system which
tries to acquire a behavior for both policies of the opponent.
The multi-module system with scheduling shows a better
performance than the one-module system. The monolithic
module with scheduling means we applied the learning
scheduling mentioned inIV-B even though the system has
only one learning module. The performance of this system
is similar to the multi-module system until the end of the
first stage (250 trials); however, it goes down at the second
stage because the obtained policy is biased against the
experiences at the first stage and cannot follow the policy
change of the opponent. Because the opponent uses one of
the policies at random in the third stage, the learning agent
obtains about 50% of the success rate. The term “without
scheduling” means we do not apply learning scheduling and
the opponent changes its policy at random from the start.
Somehow the performance of the monolithic module system
without learning scheduling gets worse after 200 trials. The
multi-module system without a learning schedule shows the
worst performance in our experiments. This result indicates
it is very difficult to recognize the situation at the early stage
of the learning process because the modules have too few
experiences to evaluate their fitness; thus, the system tends
to select the module without any consistency. As a result, the
system cannot acquire any valid policies.
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Fig. 8. Success rate during the learning

Figs. 9 and 10 show an example of sequences of the
reliabilities while the opponent is blocking the left and
right sides. The “LM1” and “LM2” indicate the learning
modules that are assigned the left and right block behaviors,
respectively. The agent seems to fail to estimate the situation
where the opponent is blocking the left or right side during
the beginning periods; however, the reliability of the appro-
priate module improves after a few seconds with the agent
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Fig. 9. The sequence of the reliability signals of modules while the opponent is blocking the left side
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Fig. 10. The sequence of the reliability signals of modules while the opponent is blocking the right side
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successfully accomplishing the task.

V. SIMULTANEOUS LEARNING WITH MACRO ACTIONS

We introduce macro actions to realize simultaneous learn-
ing in a multi-agent environment in which each agent does
not need to fix its policy according to some learning schedule.
In this experiment, the passer and the interceptor learn their
behaviors simultaneously. The passer learns behaviors for
different situations caused by the alternation of the inter-
ceptor’s policies, i.e., blocking to the left side or the right.
The interceptor also learns behaviors for different situations
caused by the alternation of the passer’s policies, i.e., passing
a ball to a left receiver or a right one.

A. Macro Actions and State Spaces

Fig. 11 shows the macro actions of the passer and the
interceptor. The macro actions by the interceptor are blocking
the pass way to the left receiver and the right one. On the
other hand, the macro action by the passer are turning left,
turning right around the ball, and approaching the ball to
kick it. A ball gazing control is embedded in both learners.

The number of the actions is reduced from 27 (see IV-A)
primitives to 2 or 3 macro actions. The state space for the

(a) passer (b) interceptor

Fig. 12. State variables

passer is constructed in terms of the y position of the ball
on the normal image, the angle between the ball and the
centers of interceptor, and the angles between the balls and
the two receivers on the image of omni-directional vision.
The number of the states is reduced from 61952 (see IV-A )
to 3773 because the set of macro actions enable us to select
a smaller number of state variables and coarser quantization.
The state space for the interceptor is constructed in terms of
the y position of the passer on the image of normal vision
system, the angle between the ball and the passer, and the
angles between the ball and the two receivers on the image
of omni-directional vision. The number of the states is 2695.

B. Experimental Results

We have checked how the simultaneous learning of the
passer and interceptor works on our computer simulation.
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Both agents start to learn their behaviors from scratch and
have 1500 trials without any scheduling. Fig. 13 show
the success rates during the simultaneous learning of the
passer and the interceptor. This figure shows the interceptor
has a higher success rate at the beginning of the learning
process while the passer is getting to acquire the appropriate
behaviors corresponding to the interceptor’s behaviors, then
both agents have an almost equal success rate at the end
of the learning stage. The sum of both success rates is not
1 because both players sometimes simultaneously failed to
pass or intercept.

To check whether both learners acquired appropriate be-
haviors as against the opponent’s behaviors, we fixed one
agent’s policy and checked to see if the other could select an
appropriate behavior, then determined its success rate. Table
I shows these results.

Both players have two modules and were assigned to
appropriate situations by themselves. LM and the digit num-
ber right after the LM indicate respectively the Learning
Module and index number of the module. For example, if the
passer uses both LM0 and LM1 and the interceptor uses only
LM0, then the passer’s success rate, interceptor’s success rate,
and draw rate are 59.0 %, 23.0%, and 18.0%, respectively.
Apparently, the player switching multi-modules achieves a
higher success rate than the opponent using only one module.
These results demonstrate the multi-module learning system
works well for both.

We have applied the same architecture to the real robots.
Fig. 14 shows the top view of the experimental environment.
Fig. 15 shows one example of behaviors by real robots. First,
the interceptor tried to block the left side, then the passer
approached the ball with the intention of passing it to the
right receiver. The interceptor found it was trying to block
the wrong side and changed to block the other (right) side, but
it was too late to intercept the ball and the passer successfully
passed the ball to the right receiver.

VI. CONCLUSION

In this paper, we proposed a method by which multiple
modules are assigned to different situations which are caused

Fig. 14. A scene of the real robot experiments

by the alternation of the other agent’s policy so that an agent
may learn purposive behaviors for the specified situations as
consequences of the other agent’s behaviors.

We introduced macro actions to realize simultaneous learn-
ing of competitive behaviors in a multi-agent system. We
have shown results of a soccer situation and the importance of
the learning scheduling in case of none-simultaneous learning
without macro actions, as well as the validity of the macro
actions in case of simultaneous learning in the multi-agent
system.
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