
Advanced Robotic Systems Scientific Book 2005
URL: http:\\www.ars-journal.com

E-mail: publication@ars-journal.com
Vienna University of Technology

Automation and Control Institute
Gusshausstrasse 27-29, A-1040 Wien,

Austria, EU

MULTI-LAYERED LEARNING
SYSTEM FOR REAL ROBOT
BEHAVIOR ACQUISITION

YASUTAKE TAKAHASHI AND MINORU ASADA
GRADUATE SCHOOL OF ENGINEERING, OSAKA UNIVERSITY

1. Introduction
One of the main issues of autonomous robots is how to implement a system with
learning capability to acquire both varieties of knowledge and behaviors through the
interaction between the robot and the environment during its lifetime. There have been
a lot of different works on learning approaches for robots to acquire behaviors based on
the methods such as reinforcement learning, genetic algorithms, and so on. Especially,
reinforcement learning has recently been receiving increased attention as a method for
behavior learning with little or no a priori knowledge and higher capability of reactive
and adaptive behaviors. However, a simple and straightforward application of
reinforcement learning methods to real robot tasks is considerably difficult due to its
almost endless exploration of which time easily scales up exponentially with the size of
the state/action spaces, which seems almost impossible from a practical viewpoint.

One of the potential solutions might be application of so-called “mixture of experts”
proposed by Jacobs and Jordan (Jacobs & Jordan, 1991), in which a set of expert
modules learn and one gating system weights the output of the each expert module for
the final system output. This idea is very general and has a wide range of applications.
However, we have to consider the following two issues to apply it to the real robot tasks:
● Task decomposition: how to find a set of simple behaviors and assign each of them

to a learning module or an expert in order to achieve the given initial task. Usually,
human designer carefully decomposes the long time-scale task into a sequence of
simple behaviors such that the one short time-scale subtask can be accomplished by
one learning module.

● Abstraction of state and/or action spaces for scaling up: the original “mixture of
experts” consists of experts and a gate for expert selection. Therefore, no more
abstraction beyond the gating module. In order to cope with complicated real robot
tasks, more abstraction of the state and/or action spaces is necessary.

Connell and Mahadevan (Connell & Mahadevan, 1993) decomposed the whole behavior
into sub-behaviors each of which can be independently learned. Morimoto and Doya
(Morimoto & Doya 1998) applied a hierarchical reinforcement learning method by
which an appropriate sequence of subgoals for the task is learned in the upper level
while behaviors to achieve the subgoals are acquired in the lower level. Hasegawa and
Fukuda (Hasegawa & Fukuda, 1999, 2001) proposed a hierarchical behavior controller,
which consists of three types of modules, behavior coordinator, behavior controller and
feedback controller, and applied it to a brachiation robot. Kleiner et al. (Kleiner et al.,
2002) proposed a hierarchical learning system in which the modules at lower layer
acquires low level skills and the module at higher layer coordinates them. However, in
these proposed methods, the designers have done the task decomposition very carefully
in advance, or the constructions of the state/action spaces for higher layer modules are
independent from the learned behaviors of lower modules. As a result, it seems difficult
to abstract situations and behaviors based on the already acquired learning/control
modules.

There are a number of works of automatic task decomposition. Digney (Digney, 1996,
Digney, 1998) has proposed Nested Q-learning algorithm that generates hierarchical
control structures in a learning system. The task decomposition has been done under two
criteria; one criterion is based on the received reinforcement signals, and the other is on
the frequency of visits to particular state space locations. However, this work has been
applied in a simple grid maze world, therefore the state space is fixed and its size is
relatively small so that the frequency heuristics can work. In the case of real robots, the
size of state space is huge if the state space consists of all sensory information, and it is
very rare to visit the same state frequently. Hengst (Hengst, 2000, Hengst 2002) has
proposed a method of generating hierarchical structure from state variables based on a
heuristics that the almost constant variables represent higher-level states while the
frequently changing variables represent lower level states. However, the designer gives
these hierarchized variables and usually we cannot expect that real robots have such
abstracted variables beforehand.

A basic idea to cope with the above two issues is that any learning module has limited
resource constraint, and this constraint of the learning capability leads us to introduce a
multi-module and multi-layered learning system. That is, one learning module has a
compact state-action space and acquires a simple map from the states to the actions, and
a gating system enables the robot to select one of the behavior modules depending on
the situation. More generally, the higher module controls the lower modules depending
on the situation. The definition of this situation depends on the capability of the lower
modules because the gating module selects one of the lower modules based on their
acquired behaviors. From the other viewpoint, the lower modules provide not only the
rational behaviors but also the abstracted situations for the higher module; how feasible
the module is, how close to its subgoal, and so on. It is reasonable to utilize such
information in order to construct state/action spaces of higher modules from already
abstracted situations and behaviors of lower ones. Thus, the hierarchical structure can
be constructed with not only experts and gating module but also more layers with
multiple homogeneous learning modules.

In this paper, we show a series of studies towards the construction of such hierarchical
learning structure developmentally. The first one (Takahashi & Asada, 2000) is
automatic construction of hierarchical structure with purely homogeneous learning
modules. Since the resource (and therefore the capability, too) of one learning module is
limited, the initially given task is automatically decomposed into a set of small subtasks
each of which corresponds to one of the small learning modules, and also the upper layer
is recursively generated to cover the whole task. In this case, the all learning modules in
the one layer share the same state and action spaces although some modules need the
part of them. Then, the second work (Takahashi & Asada, 2001) and third one
(Takahashi et al., 2003a) focused on the state and action space decomposition according
to the subtasks to make the learning much more efficient. Further, the forth one

(Takahashi et al, 2003b) realized unsupervised decomposition of a long time-scale task
by finding the compact state spaces, which consequently leads the subtask
decomposition. We have applied these methods to simple soccer situations in the context
of RoboCup (Asada et al., 1998) with real robots, and show the experimental results.

2. Multi-Layered Learning System

Fig. 1. Hierarchical architecture in multi-layered learning system

Fig. 2. Behavior Learning Module

Fig. 3. Sketch of a state value function

Figs. 1 and 2 show the architecture of the multi-layered reinforcement learning system,
in which indicate a hierarchical architecture with two levels, and an individual learning
module embedded in the layers are indicated. Each module has its own goal state in its
state space, and it learns the behavior to reach the goal, or maximize the sum of the
discounted reward received over time, using Q-learning method. The state and the action
are constructed using sensory information and motor commands, respectively at the
bottom level. The input and output to/from the higher level are the goal state activation

and the behavior activation, respectively, as shown in Fig. 2. The goal state activation g
is a normalized state value1, and g = 1 when the situation is the goal state. When the
module receives the behavior activation b from the higher modules, it calculates the
optimal policy for its own goal, and sends action commands to the lower module. The
action command at the bottom level is translated to an actual motor command, and then
the robot takes the action in the environment.

One basic idea is to use the goal state activations g of the lower modules as the
representation of the situation for the higher modules. Fig. 3 shows a sketch of a state
value function where a robot receives a positive reward one when it reaches to a
specified goal. The state value function can be regarded as closeness to the goal of the
module. The states of the higher modules are constructed using the patterns of the goal
state activations of the lower modules. In contrast, the actions of the higher-level
modules are constructed using the behavior activations to the lower modules.

3. Behavior Acquisition on Multi-Layered System (Takahashi & Asada 2000)

Fig. 4 Experimental instruments

Fig. 5 Overview of the robot system
Fig. 4 shows a picture of a mobile robot that we designed and built, a ball, and a goal,
and Fig. shows an overview of the robot system. It has two TV cameras: one has a wide-
angle lens, and the other an omni-directional mirror. The driving mechanism is PWS
(Powered Wheels Steering) system, and the action space is constructed in terms of two
torque values to be sent to two motors that drive two wheels. These parameters of the
system are unknown to the robot, and it tries to estimate the mapping from the sensory

1The state value function estimates the sum of the discounted reward received over time when the robot takes the optimal
policy, and is obtained by Q learning.

information to the appropriate motor commands by the method. The environment
consists of the ball, the goal, and the mobile robot.

Fig. 6. A hierarchical architecture on a monolithic state space

Fig. 7. The distribution of learning modules at bottom layer on the normal camera image

Fig. 8. The distribution of learning modules at bottom layer on the omni-directional camera image
In this experiment, the robot receives the information of only one goal, for the
simplicity. The bottom of Fig. 6. show a sketch of the state and action spaces of the
bottom layer in the multi-module learning system. The state space is constructed in
terms of the centroids of goal images of the two cameras and is tessellated both into 9 by
9 grids each. The action space is constructed in terms of two torque values to be sent to
two motors corresponding to two wheels and is tessellated into 3 by 3 grids.
Consequently, the numbers of states and actions are 162(9 x 9 x 2) and 9(3 x 3),
respectively. The state and action at the upper layer is constructed by the learning
modules at the lower layer which are automatically assigned.

The experiment is constructed with two stages: the learning stage and the task execution
one. First of all, the robot moves at random in the environment for about two hours. The
system learns and constructs the four layers and one learning module is assigned at the
top layer (Fig. 6). We call each layer from the bottom, “bottom”, “middle”, “upper”, and
”top” layers. In this experiment, the system assigned 40 learning modules at the bottom
layer, 15 modules at the middle layer, and 4 modules at the upper layer. Figs. 7 and 8
show the distributions of goal state activations of learning modules at the bottom layer in
the state spaces of wide-angle camera image and omni-directional mirror image,
respectively. The x and y axes indicate the centroid of goal region on the images. The
numbers in the figures indicate the corresponding learning module numbers. The figures
show that each learning module is automatically assigned on the state space uniformly.

Fig. 9 shows a rough sketch of the state transition and the commands to the lower layer
on the multi-layer learning system during navigation task. The robot was initially
located far from the goal, and faced the opposite direction to it. The target position was
just in front of the goal. The circles in the figure indicate the learning modules and their
numbers. The empty up arrows (broken lines) indicate that the upper learning module
recognizes the state which corresponds to the lower module as the goal state. The small
solid arrows indicate the state transition while the robot accomplished the task. The large
down arrows indicate that the upper learning module sends the behavior activation to the
lower learning module.

Fig. 9. A rough sketch of the state transition on the multi-layer learning system

4. State Space Decomposition and Integration (Takahashi & Asada, 2001)
The system mentioned in the previous section dealt with a whole state space from the
lower layer to the higher one. Therefore, it cannot handle the change of the state
variables because the system suppose that all tasks can be defined on the state space at
the bottom level. Further, it is easily caught by a curse of dimension if number of the
state variables becomes large. Here, we introduce an idea that the system constructs a
whole state space with several decomposed state spaces. At the bottom level, there are
several decomposed state spaces in which modules are assigned to acquire the low level
behaviors in the small state spaces. The modules at the higher level manage the lower
modules assigned to different state spaces. In this paper, we define the term “layer” as a
group of modules sharing the same state space, and the term “level” as a class in the
hierarchical structure. There might be several layers at one level (see Fig. 10).

Fig. 10. A hierarchical structure of learning modules
When the higher layer constructs its state-action space based on situations and behaviors
acquired by the modules of several lower layers, it should consider that the layers are
independent from each other, or there is dependence between them. The layer might be
basically independent from each other when the each layer's modules recognize different

objects and learn behaviors for them. For example, in the case of robot in the RoboCup
field, one layer's modules could be the experts of ball handling and the other layer's
modules the one of navigation on the field. In such a case, the state space is constructed
as direct product of module's activations of lower layers. We call this way of state space
construction “a multiplicative approach”.

On the other hand, there might be dependence between the layers when modules on both
layers recognize the same object in the environment with different logical sensor
outputs. For example, our robot recognizes an object with both perspective vision
system and omni-directional one. In such a case, the system can recognize the situation
complementary using plural layers' outputs even if one layer loses the object on its own
state spaces. We call this way of state space construction “a complementary approach”.

Fig. 10 shows an example hierarchical structure. At the lowest level, there are four
learning layers, and each of them deals with its own logical sensory space (ball positions
on the perspective camera image and omni one, and goal position on both images). At
the second level, there are three learning layers in which one adopts the multiplicative
approach and the two others adopt the complementary approach. The multiplicative
approach of the “ball pers. x goal pers” layer deals with lower modules of “ball pers.”
and “goal pers.” layers. The arrows in the figure indicate the flows from the goal state
activations to the state vectors. The arrows from the action vectors to behavior
activations are eliminated. At the third level, the system has three learning layers in
which one adopts the multiplicative approach and the others adopt the complementary
approach, again. At the levels higher than third layer, the learning layer is constructed as
described in the previous section.

Fig. 11. A sequence of the behavior activation of learning modules and the commands to the lower layer
modules
After the learning stage, we let our robot do a couple of tasks. One of them is shooting a
ball into the goal using this multi-layer learning structure. The target situation is given
by reading the sensor information when the robot pushes the ball into the goal; the robot
captures the ball and goal at center bottom in the perspective camera image. As an initial

position, the robot is located far from the goal, faced opposite direction to it. The ball
was located between the robot and the goal. Fig. 11 shows the sequence of the behavior
activation of learning modules and the commands to the lower layer modules. The down
arrows indicate that the higher learning modules fire the behavior activations of the
lower learning modules.

5. Behavior Segmentation and Coordination

Fig. 12 shows a picture of a soccer robot for middle size league of RoboCup we
designed and built, recently. The driving mechanism is PWS, and it equips a pinball like
kicking device in front of the body (see Fig. 13). These days, many robots have number
of actuators such as navigation devices and object manipulators, and have a capability of
execution of many kinds of tasks by coordinating these actuators. If one learning module
has to manipulate all actuators simultaneously, the exploration space of action scales up
exponentially with the number of the actuators, and it is impractical to apply a
reinforcement learning system.

Fig. 12. Robot with kicking devices

Fig. 13. Configuration of kicking device and wheels
Fortunately, a complicated behavior which needs many kinds of actuators might be often
generally decomposed into some simple behaviors each of which needs small number of
actuators. The basic idea of this decomposition is that we can classify them based on
aspects of the actuators. For example, we may classify the actuators into navigation
devices and manipulators, then the some of behaviors depend on the navigation devices

tightly, not on the manipulators, while the others depend on manipulators, not on the
navigation. The action space based on only navigation devices seems to be enough for
acquisition of the former behaviors, while the action space based on manipulator would
be sufficient for the manipulation tasks. If we can assign learning modules to both action
spaces and integrate them at higher layer, much smaller computational resources is
needed and the learning time can be reduced significantly.

We have implemented two kind of hierarchical system to check the basic idea. Each
system has been assigned a task. One is placing the ball in the center circle (task 1), and
the other is shooting the ball into the goal (task2).

Fig. 14. Hierarchical learning system for task 1

Fig. 15. Hierarchical learning system for task 2
We have prepared the following subtasks for the vehicle: ``Chasing a ball'', ``Looking
the goal in front of the body'', ``Reaching the center circle'', and ``Reaching the goal''.
We have also prepared the following subtasks for the kicking device: ``Catching the
ball'', ``Kicking the ball'', and ``Setting the kicking device to the home position''. Then,
the upper layer modules integrates these lower ones.

After the learner acquired low level behaviors, it puts new learning modules at higher
layer as shown in Figs. 16 and 17, and learn two kinds of behaviors.

Fig. 16 shows the sequence of the goal state activations of lower modules and behavior
commands to the lower ones. At the start of this behavior, the robot activates the module
of setting home position behavior for the kicking device and ball chasing module for the
vehicle at lower layer. The robot reaches the ball, then it activates the module of
catching the ball for kicking device and the module of reaching the center circle. Then, it
achieves the task of placing a ball to the center circle.

Fig. 16. A sequence of the goal state activations and behavior commands (Task 1)

Fig. 17. A sequence of the goal state activation and behavior activation (Task 2)

Figs. 17 and 18 shows the sequence of the goal state activations of lower modules and
behavior commands to the lower ones and the scene sequence of a real robot
experiment while the robot shoots a ball into a goal. At the start of this behavior
(Fig.18-1), the robot activates the module of setting home position behavior for the
kicking device and ball chasing module for the vehicle at lower layer (Fig.18-2,3). The
robot reaches the ball (Fig.18-4,5), then it activates the module of catching the ball for
kicking device and the module of reaching the goal for the vehicle (Fig.18-6). When the
robot captures the goal in front of the body and gets near to the goal (Fig.18-7), it
activates the module of kicking the ball, then successfully shoots the ball into the goal
(Fig.18-7).

Fig. 18. A sequence of an acquired behavior (Shooting)

6. Task Decomposition based on Self-interpretation of Instruction by Coach (Takahashi
& Asada 2003)

When we develop a real robot which learns various behaviors in its life, it seems
reasonable that a human instructs or shows some example behaviors to the robot in order
to accelerate the learning before it starts to learn. We proposed a behavior acquisition
method based on hierarchical multi-module leaning system with self-interpretation of
coach instructions. The proposed method enables a robot to
1. decompose a long term task into a set of short term subtasks,
2. select sensory information needed to accomplish the current subtask,
3. acquire a basic behavior to each subtask,
4. and integrate the learned behaviors to a sequence of the behaviors to accomplish the

given long term task.

Fig. 19. Basic concept: A coach gives instructions to a learner. The learner follows the instruction and finds
basic behaviors by itself.

Fig.19 shows a rough sketch of the basic idea. There are a learner, an opponent, and a
coach in a simple soccer situation. The coach has a priori knowledge of tasks to be
played by the learner. The learner does not have any knowledge on tasks but just follows
the instructions. In Fig. 19, the coach shows a instruction of shooting a ball into a goal
without collision to an opponent. After some instructions, the learner segments the
whole task into a sequence of subtasks, acquires a behavior for each subtask, finds the
purpose of the instructed task, and acquire a sequence of the behaviors to accomplish the
task by itself. When the coach gives new instructions, the learner reuses the learning
modules for familiar subtasks, generates new learning modules for unfamiliar subtasks
at lower level. The system generates a new module for a sequence of behaviors of the
whole instructed task at the upper level.

Fig. 20 shows a rough sketch of the idea of the task decomposition procedure. The top of
the Fig. 20 shows a monolithic state space that consists of all state variables (x1, x2, …,
xn). The red lines indicate sequences of state value during the given instructions. As we
assume beforehand, the system cannot have such a huge state space, then, decomposes
the state space into subspaces that consist of a few state variables. The system regards
that the ends of the instructions represent goal states of the given task. It checks all
subspaces and selects one in which the most ends of the instruction reach a certain area
(Gtask in Fig. 20). The system regards this area as the subgoal state of a subtask which is
a part of the given long-term task. The steps of the procedure are as follows:

1)find module unavailable areas in the instructions and regard them as unknown
subtask.

2)assign a new learning module.
a) list up subgoal candidates for the unknown subtasks on the whole state space.
b) decompose the state space into subspaces that consist of a few state variables.
c) check all subspaces and select one in which the subgoal candidates reach a

certain area best (Gsub in Fig. 3).
d) generate another learning module with the selected subspace as a state space and

the certain area as the goal state.

3)check the areas where the assigned modules are available.
4)exit if the generated modules cover all segments of instructed behaviors. Else goto 1.

The details are described in (Takahashi & Asada, 2003).

Fig. 20. Rough sketch of the idea of task decomposition procedure

Fig. 21 shows the mobile robot and a situation with which the learning agent can
encounter. The robot has an omni-directional camera system. A simple color image

processing is applied to detect the ball area and an opponent one in the image in real-
time (every 33ms).

　　　
Fig. 21. A real robot and a ball (left), and a top view of the simulated environment
(right)

The robot receives instructions for the tasks in the order as follows:
Task 1: chasing a ball
Task 2: shooting a ball into a goal without obstacles
Task 3: shooting a ball into a goal with an obstacle

Figs. 22, 23, and 24 show the ones of the example behaviors for task 1, 2, and 3,
respectively. Figs. 25, 26, and 27 show the constructed systems after the learning of the
tasks. First of all, the coach gives some instructions for the ball chasing task (task 1).
The system produce one module which acquired the behavior of ball chasing (Fig.25).
At the second stage, the coach gives some instructions for the shooting task (task 2). The
learner produces another module which has a policy of going around the ball until the
directions to the ball and the goal become same (Fig.26). At the last stage, the coach
gives some instructions for the shooting task with obstacle avoidance (task 3). The
learner produces another module which acquired the behavior of going to the
intersection between the opponent and the goal avoiding the collision (Fig.27). Fig.28
shows a sequence of a acquired behavior of the real robot for task 3.

Fig. 22. One of the example behaviors for task 1

Fig. 23. One of the example behaviors for task 2

Fig. 24. One of the example behaviors for task 3

Fig. 25. Acquired learning module for task 1

Fig. 26. Acquired hierarchical structure for task 2

Fig. 27. Acquried heirarchical structure for task 3

Fig. 28. A sequence of real robot behavior : shooting a ball into a goal with an obstacle (task3)

7. Discussion
We showed a series of approaches to the problem of decomposing the large state action
space at the bottom level into several subspaces and merging those subspaces at the
higher level. As future works, there are a number of issues to extend our current
methods.
Interference between modules

One module behavior might have inference to another one which has different actuators.
For example, the action of a navigation module will disturb the state transition from the
view point of the kicking device module; the catching behavior will be success if the
vehicle stays while it will fail if the vehicle moves.
Self-assignment of modules
It is still an important issue to find a purposive behavior for each learning module
automatically. In the paper (Takahashi & Asada, 2000), the system distributes modules
on the state space uniformly, however, it is not so efficient. In the paper (Takahashi &
Asada, 2003), the system decomposes the task by itself, however, the method uses many
heuristics and needs instruction from a coach. In many cases, the designers have to
define the goal of each module by hand based on their own experiences and insights.
Self-construction of hierarchy
Another missing point in the current method is that it does not have the mechanism that
constructs the learning layer by itself.

8. References

Asada, M.; Kitano, H.; Noda, I. & Veloso, M. (1999). RoboCup: Today and tomorrow –
what we have learned. Artificial Intelligence, 193–214.

Connell, J. H. & Mahadevan, S. 1993. ROBOT LEARNING. Kluwer Academic
Publishers. chapter “RAPID TASK LEARNING FOR REAL ROBOTS”.

Digney, B. L., “Emergent hierarchical control structures: Learning reactive/hierarchical
relationships in reinforcement environments, In From animals to animats 4:
Proceedings of The fourth conference on the Simulation of Adaptive Behavior:
SAB 96 (P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson, eds.),
pp. 363–372, The MIT Press, 1996.

Digney, B. L., “Learning hierarchical control structures for multiple tasks and changing
environments,” in From animals to animats 5: Proceedings of The fifth
conference on the Simulation of Adaptive Behavior: SAB 98 (R. Pfeifer, B.
Blumberg, J.-A. Meyer, and S. W. Wilson, eds.), pp. 321–330, The MIT Press,
1998.

Hasegawa, Y. & Fukuda, T. (1999). Learning method for hierarchical behavior
controller. In Proceedings of the 1999 IEEE International Conference on
Robotics and Automation, 2799–2804.

Hasegawa, Y.; Tanahashi, H. & Fukuda, T. (2001). Behavior coordination of brachation
robot based on behavior phase shift. In Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume CD-ROM,
526–531.

Hengst, B, “Generating hierarchical structure in reinforcement learning from state
variables,” in 6th Pacific Rim International Conference on Artificial Intelligence
(PRICAI 2000) (R. Mizoguchi and J. K. Slaney, eds.), vol. 1886 of Lecture Notes
in Computer Science, Springer, 2000.

Hengst, B., “Discovering hierarchy in reinforcement learning with HEXQ,” in
Proceedings of the Nineteenth International Conference on Machine Learning
(ICML02), pp. 243–250, 2002.

Jacobs, R.; Jordan, M.; S, N. & Hinton, G. (1991). Adaptive mixture of local experts.
Neural Computation 3:79–87.

Kleiner, A.; Dietl, M. & Nebel, B. (2002). Towards a life-long learning soccer agent. In
Kaminka, G. A.; Lima, P. U.; and Rojas, R., eds., The 2002 International
RoboCup Symposium Pre-Proceedings, CD–ROM.

Morimoto, J., and Doya, K. (1998). Hierarchical reinforcement learning of low-
dimensional subgoals and highdimensional trajectories. In The 5th International
Conference on Neural Information Processing, volume 2, 850–853.

Takahashi, Y. & Asada, M. (2000). Vision-guided behavior acquisition of a mobile
robot by multi-layered reinforcement learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 1, 395–402.

Takahashi, Y. & Asada, M. (2001). Multi-controller fusion in multi-layered
reinforcement learning. In International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI2001), 7–12.

Takahashi, Y. & Asada, M. 2003. Multi-layered learning systems for vision-based
behavior acquisition of a real mobile robot. In Proceedings of SICE Annual
Conference 2003 in Fukui, volume CD-ROM, 2937–2942.

Takahashi, Y.; Hikita, K. & Asada, M. 2003. Incremental purposive behavior acquisition
based on self-interpretation of instructions by coach. In Proceedings of 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems, CD–ROM.

 < end of manuscript>

