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1. Introduction
One of  the  main issues  of autonomous  robots  is  how to  implement  a  system with 
learning capability to acquire both varieties of knowledge and  behaviors through the 
interaction between the robot and the environment during its lifetime.  There have been 
a lot of different works on learning approaches for robots to acquire behaviors based on 
the methods such as reinforcement learning, genetic algorithms, and so on.  Especially, 
reinforcement learning has recently been receiving increased attention as a method for 
behavior learning with little or no a priori knowledge and higher capability of reactive 
and  adaptive  behaviors.   However, a  simple  and  straightforward  application  of 
reinforcement learning methods to real robot tasks is considerably difficult due to its 
almost endless exploration of which time easily scales up exponentially with the size of 
the state/action spaces, which seems almost impossible from a practical viewpoint.

One of the potential solutions might be application of so-called  “mixture of experts” 
proposed  by  Jacobs  and  Jordan  (Jacobs  & Jordan,  1991),  in  which  a  set  of  expert 
modules learn and one gating system weights the output of the each expert module for 
the final system output.  This idea is very general and has a wide range of applications. 
However, we have to consider the following two issues to apply it to the real robot tasks:
● Task decomposition: how to find a set of simple behaviors and assign each of them 

to a learning module or an expert in order to achieve the given initial task. Usually, 
human designer carefully decomposes the long time-scale task into a sequence of 
simple behaviors such that the one short time-scale subtask can be accomplished by 
one learning module.

● Abstraction of state and/or action spaces for scaling up: the original  “mixture of 
experts” consists  of  experts  and  a  gate  for  expert  selection.  Therefore,  no  more 
abstraction beyond the gating module. In order to cope with complicated real robot 
tasks, more abstraction of the state and/or action spaces is necessary. 

Connell and Mahadevan (Connell & Mahadevan, 1993) decomposed the whole behavior 
into sub-behaviors each of which can be independently learned.  Morimoto and Doya 
(Morimoto  &  Doya  1998)  applied  a  hierarchical  reinforcement  learning  method  by 
which an appropriate sequence of subgoals for the task is learned in the upper level 
while behaviors to achieve the subgoals are acquired in the lower level.  Hasegawa and 
Fukuda (Hasegawa & Fukuda, 1999, 2001) proposed a hierarchical behavior controller, 
which consists of three types of modules, behavior coordinator, behavior controller and 
feedback controller, and applied it to a brachiation robot.  Kleiner et al. (Kleiner et al., 
2002)  proposed a  hierarchical  learning system in which  the modules  at  lower  layer 
acquires low level skills and the module at higher layer coordinates them.  However, in 
these proposed methods, the designers have done the task decomposition very carefully 
in advance, or the constructions of the state/action spaces for higher layer modules are 
independent from the learned behaviors of lower modules.  As a result, it seems difficult 
to  abstract  situations  and  behaviors  based  on  the  already  acquired  learning/control 
modules.



There are a number of works of automatic task decomposition. Digney (Digney, 1996, 
Digney,  1998)  has  proposed Nested Q-learning algorithm that  generates  hierarchical 
control structures in a learning system. The task decomposition has been done under two 
criteria; one criterion is based on the received reinforcement signals, and the other is on 
the frequency of visits to particular state space locations. However, this work has been 
applied in a simple grid maze world, therefore the state space is fixed and its size is 
relatively small so that the frequency heuristics can work. In the case of real robots, the 
size of state space is huge if the state space consists of all sensory information, and it is 
very rare to visit the same state frequently. Hengst (Hengst, 2000, Hengst 2002) has 
proposed a method of generating hierarchical structure from state variables based on a 
heuristics  that  the  almost  constant  variables  represent  higher-level  states  while  the 
frequently changing variables represent lower level states. However, the designer gives 
these hierarchized variables and usually we cannot expect that real robots have such 
abstracted variables beforehand.

A basic idea to cope with the above two issues is that any learning module has limited 
resource constraint, and this constraint of the learning capability leads us to introduce a 
multi-module and multi-layered learning system. That  is, one learning module has a 
compact state-action space and acquires a simple map from the states to the actions, and 
a gating system enables the robot to select one of the behavior modules depending on 
the situation.  More generally, the higher module controls the lower modules depending 
on the situation.  The definition of this situation depends on the capability of the lower 
modules because the gating module selects one of the lower modules based on their 
acquired behaviors.  From the other viewpoint, the lower modules provide not only the 
rational behaviors but also the abstracted situations for the higher module; how feasible 
the module is,  how close to its  subgoal,  and so on.   It  is  reasonable to utilize such 
information in order to construct state/action spaces of higher modules from already 
abstracted situations and behaviors of lower ones.  Thus, the hierarchical structure can 
be  constructed  with  not  only  experts  and  gating  module  but  also  more  layers  with 
multiple homogeneous learning modules.

In this paper, we show a series of studies towards the construction of such hierarchical 
learning  structure  developmentally.  The  first  one  (Takahashi  &  Asada,  2000)  is 
automatic  construction  of  hierarchical  structure  with  purely  homogeneous  learning 
modules. Since the resource (and therefore the capability, too) of one learning module is 
limited, the initially given task is automatically decomposed into a set of small subtasks 
each of which corresponds to one of the small learning modules, and also the upper layer 
is recursively generated to cover the whole task. In this case, the all learning modules in 
the one layer share the same state and action spaces although some modules need the 
part  of  them.  Then,  the  second  work  (Takahashi  &  Asada,  2001)  and  third  one 
(Takahashi et al., 2003a) focused on the state and action space decomposition according 
to  the  subtasks  to  make  the  learning  much  more  efficient.  Further,  the  forth  one 



(Takahashi et al, 2003b) realized unsupervised decomposition of a long time-scale task 
by  finding  the  compact  state  spaces,  which  consequently  leads  the  subtask 
decomposition. We have applied these methods to simple soccer situations in the context 
of RoboCup (Asada et al., 1998) with real robots, and show the experimental results.

2. Multi-Layered Learning System

 
Fig.  1. Hierarchical architecture in multi-layered learning system

Fig.  2. Behavior Learning Module

Fig.  3. Sketch of a state value function

Figs. 1 and 2 show the architecture of the multi-layered reinforcement learning system, 
in which indicate a hierarchical architecture with two levels, and an individual learning 
module embedded in the layers are indicated. Each module has its own goal state in its 
state space, and it learns the behavior to reach the goal, or maximize the sum of the 
discounted reward received over time, using Q-learning method. The state and the action 
are  constructed  using  sensory  information  and motor  commands,  respectively  at  the 
bottom level. The input and output to/from the higher level are the goal state activation 



and the behavior activation, respectively, as shown in Fig. 2. The goal state activation g 
is a normalized state value1, and  g = 1 when the situation is the goal state. When the 
module receives the behavior activation  b from the higher modules,  it  calculates the 
optimal policy for its own goal, and sends action commands to the lower module. The 
action command at the bottom level is translated to an actual motor command, and then 
the robot takes the action in the environment.

One  basic  idea  is  to  use  the  goal  state  activations  g of  the  lower  modules  as  the 
representation of the situation for the higher modules.  Fig. 3 shows a sketch of a state 
value  function  where  a  robot  receives  a  positive  reward  one  when  it  reaches  to  a 
specified goal. The state value function can be regarded as closeness to the goal of the 
module. The states of the higher modules are constructed using the patterns of the goal 
state  activations  of  the  lower  modules.  In  contrast,  the  actions  of  the  higher-level 
modules are constructed using the behavior activations to the lower modules.

3. Behavior Acquisition on Multi-Layered System (Takahashi & Asada 2000)

Fig.  4 Experimental instruments

Fig.  5 Overview of the robot system
Fig. 4 shows a picture of a mobile robot that we designed and built, a ball, and a goal, 
and Fig. shows an overview of the robot system. It has two TV cameras: one has a wide-
angle lens, and the other an omni-directional mirror. The driving mechanism is PWS 
(Powered Wheels Steering) system, and the action space is constructed in terms of two 
torque values to be sent to two motors that drive two wheels. These parameters of the 
system are unknown to the robot, and it tries to estimate the mapping from the sensory 

1The state value function estimates the sum of the discounted reward received over time when the robot takes the optimal 
policy, and is obtained by Q learning.



information  to  the  appropriate  motor  commands  by  the  method.  The  environment 
consists of the ball, the goal, and the mobile robot.

Fig.  6. A hierarchical architecture on a monolithic state space

Fig.  7. The distribution of learning modules at bottom layer on the normal camera image



Fig.  8. The distribution of learning modules at bottom layer on the omni-directional camera image
In  this  experiment,  the  robot  receives  the  information  of  only  one  goal,  for  the 
simplicity.  The bottom of Fig. 6. show a sketch of the state and action spaces of the 
bottom layer in the multi-module learning system.  The state  space is  constructed in 
terms of the centroids of goal images of the two cameras and is tessellated both into 9 by 
9 grids each. The action space is constructed in terms of two torque values to be sent to 
two  motors  corresponding  to  two  wheels  and  is  tessellated  into   3  by  3  grids. 
Consequently,  the  numbers  of  states  and  actions  are  162(9  x  9  x  2)  and 9(3  x  3), 
respectively.  The  state  and  action  at  the  upper  layer  is  constructed  by  the  learning 
modules at the lower layer which are automatically assigned.

The experiment is constructed with two stages: the learning stage and the task execution 
one. First of all, the robot moves at random in the environment for about two hours. The 
system learns and constructs the four layers and one learning module is assigned at the 
top layer (Fig. 6). We call each layer from the bottom, “bottom”, “middle”, “upper”, and 
”top” layers. In this experiment, the system assigned 40 learning modules at the bottom 
layer, 15 modules at the middle layer, and 4 modules at the upper layer. Figs. 7 and 8 
show the distributions of goal state activations of learning modules at the bottom layer in 
the  state  spaces  of  wide-angle  camera  image  and  omni-directional  mirror  image, 
respectively. The x and y axes indicate the centroid of goal region on the images. The 
numbers in the figures indicate the corresponding learning module numbers. The figures 
show that each learning module is automatically assigned on the state space uniformly.

Fig. 9 shows a rough sketch of the state transition and the commands to the lower layer 
on  the  multi-layer  learning  system  during  navigation  task.  The  robot  was  initially 
located far from the goal, and faced the opposite direction to it. The target position was 
just in front of the goal. The circles in the figure indicate the learning modules and their 
numbers. The empty up arrows (broken lines) indicate that the upper learning module 
recognizes the state which corresponds to the lower module as the goal state. The small 
solid arrows indicate the state transition while the robot accomplished the task. The large 
down arrows indicate that the upper learning module sends the behavior activation to the 
lower learning module.



Fig.  9. A rough sketch of the state transition on the multi-layer learning system

4. State Space Decomposition and Integration (Takahashi & Asada, 2001)
The system mentioned in the previous section dealt with a whole state space from the 
lower  layer  to  the  higher  one.  Therefore,  it  cannot  handle  the  change  of  the  state 
variables because the system suppose that all tasks can be defined on the state space at 
the bottom level.  Further, it is easily caught by a curse of dimension if number of the 
state variables  becomes large. Here, we introduce an idea that the system constructs a 
whole state space with several decomposed state spaces. At the bottom level, there are 
several decomposed state spaces in which modules are assigned to acquire the low level 
behaviors in the small state spaces. The modules at the higher level manage the lower 
modules assigned to different state spaces. In this paper, we define the term “layer” as a 
group of modules sharing the same state space, and the term “level” as a class in the 
hierarchical structure. There might be several layers at one level (see Fig. 10).

Fig.  10. A hierarchical structure of learning modules
When the higher layer constructs its state-action space based on situations and behaviors 
acquired by the modules of several lower layers, it should consider that the layers are 
independent from each other, or there is dependence between them. The layer might be 
basically independent from each other when the each layer's modules recognize different 



objects and learn behaviors for them. For example, in the case of robot in the RoboCup 
field, one layer's modules could be the experts of ball handling and the other layer's 
modules the one of navigation on the field. In such a case, the state space is constructed 
as direct product of module's activations of lower layers. We call this way of state space 
construction “a multiplicative approach”.

On the other hand, there might be dependence between the layers when modules on both 
layers  recognize  the  same  object  in  the  environment  with  different  logical  sensor 
outputs.  For  example,  our  robot  recognizes  an  object  with  both  perspective  vision 
system and omni-directional one. In such a case, the system can recognize the situation 
complementary using plural layers' outputs even if one layer loses the object on its own 
state spaces. We call this way of state space construction “a complementary approach”.
 
Fig.  10 shows an example hierarchical  structure.  At the lowest  level,  there  are  four 
learning layers, and each of them deals with its own logical sensory space (ball positions 
on the perspective camera image and omni one, and goal position on both images). At 
the second level, there are three learning layers in which one adopts the multiplicative 
approach and the  two  others  adopt  the  complementary  approach.  The  multiplicative 
approach of the “ball pers. x goal pers” layer deals with lower modules of “ball pers.” 
and “goal pers.” layers. The arrows in the figure indicate the flows from the goal state 
activations  to  the  state  vectors.  The  arrows  from  the  action  vectors  to  behavior 
activations are eliminated. At the third level,  the system has three learning layers in 
which one adopts the multiplicative approach and the others adopt the complementary 
approach, again. At the levels higher than third layer, the learning layer is constructed as 
described in the previous section.

Fig.  11.  A sequence of the behavior activation of learning modules and the commands to the lower layer 
modules
After the learning stage, we let our robot do a couple of tasks. One of them is shooting a 
ball into the goal using this multi-layer learning structure. The target situation is given 
by reading the sensor information when the robot pushes the ball into the goal; the robot 
captures the ball and goal at center bottom in the perspective camera image. As an initial 



position, the robot is located far from the goal, faced opposite direction to it. The ball 
was located between the robot and the goal. Fig. 11 shows the sequence of the behavior 
activation of learning modules and the commands to the lower layer modules. The down 
arrows indicate that the higher learning modules fire the behavior activations of the 
lower learning modules.

5. Behavior Segmentation and Coordination

Fig.  12 shows a  picture of  a  soccer  robot  for  middle  size  league  of  RoboCup we 
designed and built, recently. The driving mechanism is PWS, and it equips a pinball like 
kicking device in front of the body (see Fig. 13). These days, many robots have number 
of actuators such as navigation devices and object manipulators, and have a capability of 
execution of many kinds of tasks by coordinating these actuators. If one learning module 
has to manipulate all actuators simultaneously, the exploration space of action scales up 
exponentially  with  the  number  of  the  actuators,  and  it  is  impractical  to  apply  a 
reinforcement learning system.

Fig.  12. Robot with kicking devices

Fig.  13. Configuration of kicking device and wheels
Fortunately, a complicated behavior which needs many kinds of actuators might be often 
generally decomposed into some simple behaviors each of which needs small number of 
actuators. The basic idea of this decomposition is that we can classify them based on 
aspects  of the actuators.  For example,  we may classify the actuators into navigation 
devices and manipulators, then the some of behaviors depend on the navigation devices 



tightly, not on the manipulators, while the others depend on manipulators, not on the 
navigation. The action space based on only navigation devices seems to be enough for 
acquisition of the former behaviors, while the action space based on manipulator would 
be sufficient for the manipulation tasks. If we can assign learning modules to both action 
spaces  and integrate  them at  higher  layer,  much  smaller  computational  resources  is 
needed and the learning time can be reduced significantly.

We have implemented two kind of hierarchical system to check the basic idea. Each 
system has been assigned a task. One is placing the ball in the center circle (task 1), and 
the other is shooting the ball into the goal (task2). 

Fig.  14. Hierarchical learning system for task 1

Fig.  15. Hierarchical learning system for task 2
We have prepared the following subtasks for the vehicle: ``Chasing a ball'', ``Looking 
the goal in front of the body'', ``Reaching the center circle'', and ``Reaching the goal''. 
We have also prepared the following subtasks for the kicking device: ``Catching the 
ball'', ``Kicking the ball'', and ``Setting the kicking device to the home position''. Then, 
the upper layer modules integrates these lower ones.

After the learner acquired low level behaviors, it puts new learning modules at higher 
layer as shown in Figs. 16 and 17, and learn two kinds of behaviors.



Fig. 16 shows the sequence of the goal state activations of lower modules and behavior 
commands to the lower ones. At the start of this behavior, the robot activates the module 
of setting home position behavior for the kicking device and ball chasing module for the 
vehicle  at  lower  layer.  The  robot  reaches  the  ball,  then  it  activates  the  module  of 
catching the ball for kicking device and the module of reaching the center circle. Then, it 
achieves the task of placing a ball to the center circle.
 

Fig.  16. A sequence of the goal state activations and behavior commands (Task 1)

Fig.  17. A sequence of the goal state activation and behavior activation (Task 2)



Figs. 17 and 18 shows the sequence of the goal state activations of lower modules and 
behavior  commands  to  the  lower  ones and  the  scene  sequence  of  a  real  robot 
experiment while  the  robot  shoots  a  ball  into  a  goal. At  the  start  of  this  behavior 
(Fig.18-1),  the robot  activates  the module of  setting home position behavior  for  the 
kicking device and ball chasing module for the vehicle at lower layer (Fig.18-2,3). The 
robot reaches the ball (Fig.18-4,5), then it activates the module of catching the ball for 
kicking device and the module of reaching the goal for the vehicle (Fig.18-6). When the 
robot captures the goal in front of the body and gets near to the goal (Fig.18-7),  it 
activates the module of kicking the ball, then successfully shoots the ball into the goal 
(Fig.18-7).

Fig.  18. A sequence of an acquired behavior (Shooting)

6. Task Decomposition based on Self-interpretation of Instruction by Coach (Takahashi 
& Asada 2003)

When  we  develop  a  real  robot  which  learns  various  behaviors  in  its  life,  it  seems 
reasonable that a human instructs or shows some example behaviors to the robot in order 
to accelerate the learning before it starts to learn. We proposed a behavior acquisition 
method based on hierarchical multi-module leaning system with self-interpretation of 
coach instructions. The proposed method enables a robot to
1. decompose a long term task into a set of short term subtasks, 
2. select sensory information needed to accomplish the current subtask, 
3. acquire a basic behavior to each subtask,
4. and integrate the learned behaviors to a sequence of the behaviors to accomplish the 

given long term task.



Fig.  19.  Basic concept: A coach gives instructions to a learner. The learner follows the instruction and finds 
basic behaviors by itself.

Fig.19 shows a rough sketch of the basic idea. There are a learner, an opponent, and a 
coach in a simple soccer situation. The coach has  a priori knowledge of tasks to be 
played by the learner. The learner does not have any knowledge on tasks but just follows 
the instructions. In Fig. 19, the coach shows a instruction of shooting a ball into a goal 
without  collision  to  an  opponent.  After  some  instructions,  the  learner  segments  the 
whole task into a sequence of subtasks, acquires a behavior for each subtask, finds the 
purpose of the instructed task, and acquire a sequence of the behaviors to accomplish the 
task by itself. When the coach gives new instructions, the learner reuses the learning 
modules for familiar subtasks, generates new learning modules for unfamiliar subtasks 
at lower level. The system generates a new module for a sequence of behaviors of the 
whole instructed task at the upper level. 

Fig. 20 shows a rough sketch of the idea of the task decomposition procedure. The top of 
the Fig. 20 shows a monolithic state space that consists of all state variables (x1, x2, …, 
xn). The red lines indicate sequences of state value during the given instructions. As we 
assume beforehand, the system cannot have such a huge state space, then, decomposes 
the state space into subspaces that consist of a few state variables. The system regards 
that the ends of the instructions represent goal states of the given task. It  checks all 
subspaces and selects one in which the most ends of the instruction reach a certain area 
(Gtask in Fig. 20). The system regards this area as the subgoal state of a subtask which is 
a part of the given long-term task. The steps of the procedure are as follows:

1)find  module  unavailable  areas  in  the  instructions  and  regard  them  as  unknown 
subtask.

2)assign a new learning module.
a) list up subgoal candidates for the unknown subtasks on the whole state space.
b) decompose the state space into subspaces that consist of a few state variables.
c) check all  subspaces  and  select  one  in  which  the  subgoal  candidates  reach  a 

certain area best (Gsub in Fig. 3).
d) generate another learning module with the selected subspace as a state space and 

the certain area as the goal state.



3)check the areas where the assigned modules are available.
4)exit if the generated modules cover all segments of instructed behaviors. Else goto 1.

The details are described in (Takahashi & Asada, 2003).

Fig. 20. Rough sketch of the idea of task decomposition procedure

Fig.  21  shows  the  mobile  robot  and  a  situation  with  which  the  learning  agent  can 
encounter.  The robot  has  an omni-directional  camera  system. A simple  color  image 



processing is applied to detect the ball area and an opponent one in the image in real-
time (every 33ms).

　　　
Fig. 21. A real robot and a ball (left), and a top view of the simulated environment 
(right)

The robot receives instructions for the tasks in the order as follows:
Task 1: chasing a ball 
Task 2: shooting a ball into a goal without obstacles
Task 3: shooting a ball into a goal with an obstacle

Figs.  22,  23,  and 24 show the ones  of  the example behaviors  for  task  1,  2,  and 3, 
respectively. Figs. 25, 26, and 27 show the constructed systems after the learning of the 
tasks. First of all, the coach gives some instructions for the ball chasing task (task 1). 
The system produce one module which acquired the behavior of ball chasing (Fig.25). 
At the second stage, the coach gives some instructions for the shooting task (task 2). The 
learner produces another module which has a policy of going around the ball until the 
directions to the ball and the goal become same (Fig.26). At the last stage, the coach 
gives  some instructions  for  the  shooting  task  with  obstacle  avoidance  (task  3).  The 
learner  produces  another  module  which  acquired  the  behavior  of  going  to  the 
intersection between the opponent and the goal avoiding the collision (Fig.27). Fig.28 
shows a sequence of a acquired behavior of the real robot for task 3.



Fig. 22. One of the example behaviors for task 1

Fig. 23. One of the example behaviors for task 2

Fig. 24. One of the example behaviors for task 3



Fig. 25. Acquired learning module for task 1

Fig. 26. Acquired hierarchical structure for task 2



Fig. 27. Acquried heirarchical structure for task 3

Fig. 28. A sequence of real robot behavior : shooting a ball into a goal with an obstacle (task3)

7. Discussion
We showed a series of approaches to the problem of decomposing the large state action 
space at the bottom level into several subspaces and merging those subspaces at the 
higher  level.  As  future  works,  there  are  a  number  of  issues  to  extend  our  current 
methods.
Interference between modules



One module behavior might have inference to another one which has different actuators. 
For example, the action of a navigation module will disturb the state transition from the 
view point of the kicking device module; the catching behavior will be success if the 
vehicle stays while it will fail if the vehicle moves.
Self-assignment of modules
It  is  still  an  important  issue  to  find a  purposive  behavior for  each  learning module 
automatically. In the paper (Takahashi & Asada, 2000), the system distributes modules 
on the state space uniformly, however, it is not so efficient. In the paper (Takahashi & 
Asada, 2003), the system decomposes the task by itself, however, the method uses many 
heuristics  and needs instruction from a coach.  In many cases,  the designers have to 
define the goal of each module by hand based on their own experiences and insights.
Self-construction of hierarchy 
Another missing point in the current method is that it does not have the  mechanism that 
constructs the learning layer by itself. 

8. References

Asada, M.; Kitano, H.; Noda, I. & Veloso, M. (1999). RoboCup: Today and tomorrow – 
what we have learned. Artificial Intelligence, 193–214.

Connell,  J.  H.  &  Mahadevan,  S.  1993.  ROBOT  LEARNING.  Kluwer  Academic 
Publishers. chapter “RAPID TASK LEARNING FOR REAL ROBOTS”.

Digney, B. L., “Emergent hierarchical control structures: Learning reactive/hierarchical 
relationships  in  reinforcement  environments,  In  From  animals  to  animats  4: 
Proceedings of The fourth conference on the Simulation of Adaptive Behavior:  
SAB 96 (P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson, eds.), 
pp. 363–372, The MIT Press, 1996.

Digney, B. L., “Learning hierarchical control structures for multiple tasks and changing 
environments,”  in  From  animals  to  animats  5: Proceedings  of  The  fifth 
conference  on  the  Simulation  of  Adaptive Behavior:  SAB  98  (R.  Pfeifer,  B. 
Blumberg, J.-A. Meyer, and S. W. Wilson, eds.), pp. 321–330, The MIT Press, 
1998.

Hasegawa,  Y.  &  Fukuda,  T.  (1999).  Learning  method  for  hierarchical  behavior 
controller.  In  Proceedings  of  the 1999  IEEE  International  Conference  on 
Robotics and Automation, 2799–2804.

Hasegawa, Y.; Tanahashi, H. & Fukuda, T. (2001). Behavior coordination of brachation 
robot  based  on  behavior  phase  shift.  In  Proceedings  of  the  2001  IEEE/RSJ 
International Conference on Intelligent Robots and Systems, volume CD-ROM, 
526–531.

Hengst,  B,  “Generating  hierarchical  structure  in  reinforcement  learning  from  state 
variables,” in 6th Pacific Rim International Conference on Artificial Intelligence 
(PRICAI 2000) (R. Mizoguchi and J. K. Slaney, eds.), vol. 1886 of Lecture Notes 
in Computer Science, Springer, 2000.



Hengst,  B.,  “Discovering  hierarchy  in  reinforcement  learning  with  HEXQ,”  in 
Proceedings of  the Nineteenth International  Conference on Machine  Learning 
(ICML02), pp. 243–250, 2002.

Jacobs, R.; Jordan, M.; S, N. & Hinton, G. (1991). Adaptive mixture of local experts. 
Neural Computation 3:79–87.

Kleiner, A.; Dietl, M. & Nebel, B. (2002). Towards a life-long learning soccer agent. In 
Kaminka,  G.  A.;  Lima,  P.  U.;  and  Rojas,  R.,  eds.,  The  2002  International  
RoboCup Symposium Pre-Proceedings, CD–ROM.

Morimoto,  J.,  and  Doya,  K.  (1998).  Hierarchical  reinforcement  learning  of  low-
dimensional subgoals and highdimensional trajectories. In  The 5th International  
Conference on Neural Information Processing, volume 2, 850–853.

Takahashi,  Y.  & Asada,  M.  (2000).  Vision-guided behavior  acquisition of  a  mobile 
robot  by  multi-layered  reinforcement  learning.  In  IEEE/RSJ  International 
Conference on Intelligent Robots and Systems, volume 1, 395–402.

Takahashi,  Y.  &  Asada,  M.  (2001).  Multi-controller  fusion  in  multi-layered 
reinforcement learning. In  International Conference on Multisensor Fusion and  
Integration for Intelligent Systems (MFI2001), 7–12.

Takahashi,  Y.  &  Asada,  M.  2003.  Multi-layered  learning  systems  for  vision-based 
behavior  acquisition  of  a  real  mobile  robot.  In  Proceedings  of  SICE  Annual  
Conference 2003 in Fukui, volume CD-ROM, 2937–2942.

Takahashi, Y.; Hikita, K. & Asada, M. 2003. Incremental purposive behavior acquisition 
based  on  self-interpretation  of  instructions  by  coach.  In  Proceedings  of  2003 
IEEE/RSJ International Conference on Intelligent Robots and Systems, CD–ROM.

     < end of manuscript>


