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Abstract— Studies on lexicon acquisition systems are gaining
attention in hope for a natural human-robot interface and a test
environment for theories of infant lexicon acquisition. This paper
presents a system that forms word categories based on object-
oriented behaviors. By using physical experiences, the system is
able to generalize names to objects with various visual features.
The system was implemented to a mobile robot acquiring lexicon
about object categories with different rolling preferences. The
system successfully acquired the lexicon and generalized the
names to objects with various visual features in accordance with
their rolling preferences.

I. I NTRODUCTION

Young children are known to acquire lexicon in a very rapid
style [1]. Considering the fact that there are infinite possible
relations between objects and words [2], this rapid acquisition
is an amazing phenomenon and still a subject of debate. On
the other hand, many robots aimed to work in human society
are developed today. These robots are expected to have a
natural communication with their users, and sharing a common
lexicon with human is one of the fundamental issues to be
attacked for this goal. For these reasons, studies on lexicon
acquisition systems are gaining attention today.

The problem of lexicon acquisition has been lively discussed
in the field of psychology. To explain how infants find word
meanings from few examples, many researchers proposed hy-
potheses that children possess cognitive constraints to limit the
possibility of meanings [3] [4]. Although these rules explain
some tendencies in early word learning, such constraints are
not the only ability for lexicon acquisition. Recent studies
have revealed that children can form categories for words by
focusing on specific features or functions of objects. Nelson et
al. [5] showed that 2-year-olds generalize names in accordance
with objects’ functions. This generalization of names seems
effective since our environment is full of artifacts created
for particular functional purposes. However, the mechanism
underlying this process is unrevealed.

Recently, researches on lexicon acquisition have been ex-
tending their activities to the field of robotics. Although most
language processing systems developed so far work in a virtual
world [6] [7], some robots that ground words to sensory-
motor experience are developed. The grounding process of
words consists of clipping and forming categories from sensor
information, and connecting labels to categories. The process
is regarded as the first step toward solving the problem
of symbol grounding [8], since relation of grounded word
categories will lead to acquisition of more abstract words.

For example, acquisition of nouns will lead to acquisition
of verbs since verbs can be understood as relations of few
nouns. Roy [9] developed a system that learns words from
untranscribed acoustic and video inputs. Although the system
solved many difficult problems such as segmenting words from
infant-directed speech, there remains a problem that caregivers
need to teach names whenever new objects with unfamiliar
visual features are introduced. The problem is due to the fact
that categorization is performed mostly in a passive style,
where categories are formed based on similarity of visual
features. Such an approach does not enable acquiring high
level concepts such as functions of objects, and there are
features that could only be recognized through actions such as
“heaviness” and “softness”. It is also pointed out by Steels and
Kaplan [10] that feature based clustering methods might not
provide the way to acquire word categories of visual features
in real environments where light conditions change. Facing
the problem of acquiring more realistic categories for words,
the study by Fitzpatrick and Metta [11] is suggestive. They
show the effectiveness of action in object identification, but the
proposed system with fixed actions is insufficient for acquiring
word categories.

In this paper, we propose a system which forms word
categories based on object-oriented behaviors. The system
regards objects handled in the same way belong to the same
category. To acquire the word “door”, for example, the system
forms a category of objects that could be opened by grabbing,
turning, and pulling the knob on them. The concrete system
adopts a multi-module learning system [12] in which each
module corresponds to an object-oriented behavior. The robot
identifies the behavior oriented to the object based on effec-
tivity of the behavior module, and form categories of visual
features with same object-oriented behavior. The system is
a model for the name generalization phenomenon found by
Nelson et al. We implemented the system to a real robot
learning a lexicon about objects that have different rolling
preferences [11]. The robot successfully attained the lexicon
and generalized the names to new objects according to their
object-oriented behaviors.



II. SYSTEM OVERVIEW

A. Basic idea

Lexicon acquisition we address here is to learn words of
objects given by a caregiver (Fig. 1). By word, we do not mean
unique name given to each object. The words that the learner
aims to acquire are common nouns, such as “ball” which
refer to spherical objects with various sizes and colors. A
practical goal of the learner is to tell labels of objects in view.
In order to accomplish this goal, the learner needs to know
the corresponding labels for given visual features of objects.
However, the learner needs to form and extend word categories
of visual features by themselves since the caregiver cannot tell
the names of all objects. The learner forms word categories of
visual features based on forms of object-oriented behaviors,
that is, it forms word categories by putting visual features of
objects handled in a same way to a same category. By utilizing
physical experience, the learner is able to generalize names to
objects with unfamiliar visual features.

Fig. 1. Environment of lexicon acquisition.

B. Assumptions

The main problem we address here is to form realistic word
categories and to acquire lexicon based on these categories in
an effective way. In order to focus on these problems, we
assume the following conditions in this paper.

1) Learner can extract object region from visual image.
2) Only one object is in view at a time.
3) Ability of object identification is not given, that is,

learner does not know in advance whether different
visual images belong to the same object or not.

4) Caregiver gives one label at a time.
5) Caregiver gives a label only when the corresponding

object is in the learner’s view.
6) Object-oriented behaviors are not given. Learner ac-

quires the behavior through trial and error process.

C. Lexicon Acquisition System

The overview of the lexicon acquisition system given to the
learner is shown in Fig. 2. The system obtains three types of
information about the objects as shown below.

1) System extracts an object region from the visual image
by color based method and obtainsvisual featuresof
objects such as colors and shapes.

2) The system obtains information for object-oriented be-
havior such as object’s position and direction. We call
these kinds of informationstate variablesin terms for
reinforcement learning.

3) Labels of objects are given to the learner from the
caregiver.

Visual informations about objects are classified into two
kinds: visual features and state variables. These kinds of infor-
mation can be interpreted as ones for identification and control.
Such classification of visual information is also reported to
exist in human brains [13]. The system identifies the object-
oriented behavior of the given object based on sequence of
state transition, and categorizes the visual features according
to this identification.

The system acquires lexicon based on four different learning
processes running in parallel as shown below.

1) Object-oriented behavior learning.
2) Visual feature space categorization based on the object-

oriented behaviors.
3) Visual feature space categorization based on labels.
4) Correspondence learning between object-oriented be-

haviors and labels.

The system learns and identifies object-oriented behaviors
with a multi-module learning system. The system then forms
word categories of visual features based on the object-oriented
behaviors. On the other hand, system also forms word cat-
egories of visual features based on the labels given by the
caregiver. This means that there are two different process of
categorization for the visual feature space. The categorizations
are performed byadaptive networks. As the categories grow,
the correspondence between the two groups of categories
is learned byHebbian network, connecting the categories
selected simultaneously. When correspondence between label
and behavior is found, the system can generalize the label
to objects with same object-oriented behavior. Details of each
learning system are explained in the following sections. III, IV,
and V explain the learning process of multi-module learning
system, adaptive network, and Hebbian network, respectively.
The different learning processes are explained to run one at a
time for simplicity, but the system is designed to works even
when all the learning system runs in parallel. Scheduling of
lexicon learning process is not needed.

D. Task

To show the validity of the proposed system, we imple-
mented the system to a mobile robot (shown in Fig. 3 equipped
with omni-directional wheels and a camera) learning lexicon
about objects with different rolling preference. We used the
objects shown in Fig. 4, and gave labels namely “ball”, “box”,
“cylinder”, and “car”. After presenting the objects shown in
Fig. 4(a), (b), (c), and (d) paired with the labels corresponding
to them, we introduced new objects shown in Fig. 4(e), (f),



Fig. 2. Sketch of system for acquiring lexicon from physical experience.

(g), and (h) without the corresponding labels. If the system
successfully learned the relationship between object-oriented
behaviors and labels, it should be able to generalize the labels
to the new objects.

(a) robot

(b) camera

(c) omni-
directional
wheels

Fig. 3. Robot used in experiment.

III. L EARNING AND IDENTIFYING

OBJECT-ORIENTED BEHAVIOR

A. Reinforcement Learning

Object-oriented behaviors are learned by reinforcement
learning. The process enables an agent to acquire rational
behaviors from trial and error processes based on the reward
given by the designer. In general reinforcement learning,
interaction between agent and environment is modeled as
shown in Fig. 5. In every time step, agent obtains a discrete
representation of the current statest ∈ S (S is the set of
possible states), and selects an actionat ∈ A(st) (A(st) is
the set of possible action at statest). Then the next state
st+1 ∈ S and rewardrt+1 ∈ R is determined, depending
only to the state and action selected by the agent.

Task of reinforcement learning is to choose a policya =
f(s) which maximizes the decaying sum of reward shown

(a) ball (b) box (c) cylinder (d) car

(e) new ball (f) new box (g) new
cylinder

(h) new car

Fig. 4. Objects used in experiment.

below,
∞∑

n=0

γnrt+n (1)

whereγ is the decay factor larger than 0 and smaller than 1.

Fig. 5. Basic model of agent-environment interaction in reinforcement
learning.

B. Behavior Learning Module

Agent in reinforcement learning builds two models for the
environment. One isstate transition modelwhich is a set of
possibilities of each state transition.

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (2)

Another isreward prediction modelwhich is a set of expected
reward values for each state-action set.

R̂a
s =

∑

s′

E{rt+1|st = s, at = a} (3)

As thestate transition modelandreward prediction modelare
built, the agent calculates theaction valueQ(s, a) (a set of
expected decaying reward sum for every state-action set) based
on dynamic programming method.

Q(s, a) =
∑

s′

P̂a
ss′ [R̂a

s + γ max
a′

Q(s′, a′)] (4)

When Q(s, a) converges, the rational policy for the environ-
ment is given as follows.

f(s) = arg max
a

Q(s, a) (5)



C. Multi-module learning system

Since systems with a single learning module needs relearn-
ing whenever the environment changes,multi-module learning
systemis proposed [12]. We adopted thismulti-module learn-
ing systemto enable the system to obtain multiple object-
oriented behaviors and switching the behavior according to
the object. When the agent encounters an object, it identifies
the behavior oriented to the object by choosing the learning
module with the smallest action value error:

∆Q(st, at) = rt+1 + γ max
at+1

Q(st+1, at+1) − Q(st, at). (6)

When action value errors of all existing behavior modules ex-
ceed a predefined threshold, a new learning module is assigned
to learn the behavior for the new object. The threshold should
be balanced to avoid redundant computation and to acquire
enough categories for object handling.

D. Behavior Module Configuration

The state space consist of direction of principal axis of
the objectθ ∈ [−90, 90] as shown in Fig. 6(a). The state
space is quantized into 7, and another state is added to
represent cases when principal axis is uncertain. The robot
is able to choose three actions (Fig. 6(b)) namely, kicking the
object forward, moving clockwise and anticlockwise around
the object. Finally, a reward which value is proportional to
moving distance of the object is given to the robot.

(a) state (b) action

Fig. 6. State and action for task.

E. Object-oriented behavior learning and identification exper-
iment

The robot learned the rolling behavior for the objects shown
in Fig. 4(a), (b), (c) and (d). The transition of the action value
error while learning the behaviors is shown in Fig. 7 where
each curve with different color corresponds to different learn-
ing modules. The robot experienced the objects in fixed order
of ball, box, cylinder, and car. They interacted with the objects
for 5 trials in the first 20 trials, for 3 trials in the next 12 trials,
and after on, the object was switched after each trial. As shown
in the figure, every time an unfamiliar object was introduced,
the action error exceeded the limit∆Qlimit(s, a) = 1.0 and
a new learning module was assigned. The figure also shows
that the same learning module is selected for each object. This

indicates that the system successfully acquired a set of learning
module that can identify the object based on object-oriented
behaviors.
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Fig. 7. Action value error of each learning module while learning object-
oriented behaviors.

IV. CATEGORIZATION OF VISUAL FEATURE SPACE

A. Adaptive network

Adaptive networks, a modified radial basis function, is used
for the categorization of visual feature space. The network
consists of locally reactive units whose response is greatest
at a central valuem, and decays exponentially around this
central value.

zj(x) = e−
1
2

∑N

i=1
(

xi−mji
σ )2 (7)

Output of each category’s network is a weighted sum of it’s
units,

yk(x) =
J∑

j=1

wjzj(x) (8)

and category with the greatest output is chosen as the best
matching category.

The system categorizes the feature space by modifying the
network weights and adding new units. When a training data
(visual features with label or behavior) is given and categoriza-
tion is successful, the network weight of the matching category
is increased as shown below.

wj ←− wj + βzj(x) (9)

If the categorization is not successful, a new unit is assigned.
The weights are decreased whenever the network is modified.

wj ←− αwj (10)

This process enables the system to forget unused categories,
and keep adapted to changes of the environment.β ∈ [0, 1] is
a learning rate, andα ∈ [0, 1] is a decay factor. Each factor
should be determined in relation with the other.



B. Visual feature

We adopt YUV color space and UV color histogram as
visual feature in the experiment. UV space is quantized into
16 × 16, so the color histogram is a 256 dimension vector
representing frequency of quantized color in UV space. Fig.
8 shows an example of the UV space histogram. The system
usesχ2-distance as distance metric.

χ2(A, B) =
∑

i

(ai − bi)2

ai + bi
(11)

(a) extracted
image
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Fig. 8. Color histogram of object.

V. L EARNING RELATION BETWEEN

OBJECT-ORIENTED BEHAVIORS AND LABELS

A. Hebbian network

A Hebbian network is used for learning relation between
object-oriented behaviors and labels. The relation is learned
by increasing the connection strength between the behavior
and the label whose category is selected simultaneously. The
weight of the simultaneously selected categories are increased
with the valueδinc,

wi,j ←− wi,j + δinc (12)

and other connections are decreased withδinh to disregard
words unrelated to object-oriented behaviors.

wi,j ←− wi,j − δinh (13)

δinc andδdec have positive values smaller than 1.
The Hebbian network enables the learner to generalize

labels to other objects based on object-oriented behavior only
when label and object-oriented behavior is related.

B. Lexicon acquisition experiment

After the robot learned the handling behaviors (described
in section III-E) and categorized the visual feature space
based on the behaviors, the caregiver gave the labels of the
objects which the robot learned to handle (Fig. 4(a), (b), (c)
and (d)) in random order. When the label was given, the
system categorized the visual feature by assigning the visual
features simultaneously given to the category of the given
label. As the category of the label grows, the relationship
between object-oriented behaviors and labels is learned by
modifying the weight of the Hebbian network. Sketch of the

Hebbian network weight transition recorded from real robot
experiment in accordance with the number of times the label
was given is shown in Fig. 9. The figure shows that the system
successfully learned the one-to-one correspondence of object-
oriented behaviors and labels.

(a) 10 labels (b) 20 labels (c) 30 labels

(d) 40 labels (e) 50 labels (f) 60 labels

Fig. 9. Weight transition of Hebbian network. Width of connection represents
connection weight.

VI. WORD GENERALIZATION BASED ON

OBJECT-ORIENTED BEHAVIOR

A. Word generalization policy

By learning the relationship between object handling behav-
iors and labels, the system can generalize words to unfamiliar
objects based on object-oriented behaviors. When the learner
encounters unfamiliar objects, it identifies the behavior ori-
ented to the object by choosing the best matching behavior
module in the multi-module learning system. Then, the visual
feature of the unfamiliar object is assigned to the category
of the selected behavior. To predict the label of the object in
view, the system performs the following process.

1) The system selects a best matching category for the vi-
sual features of object in view, considering both adaptive
networks of behaviors and labels. (Fig. 10)

2) If a category is selected from adaptive network of label,
it is likely that the label of the object is already given,
and the system outputs the selected label. (Fig. 10(a))

3) If a category is selected from adaptive network of
behavior, it is likely that the label of the object is not
given, but the object-oriented behavior of the object is
known. In this case, the system outputs the label with
the heaviest connection to the selected behavior. (Fig.
10(b))



(a) label guessing by label category

(b) label guessing by behavior category

Fig. 10. Label guessing process.

B. Word generalization experiment

After learning the relation between object-oriented behav-
iors and labels (described in section V-B), the robot was
presented the new objects shown in Fig. 4(e), (f), (g) and (h)
without labels. Since all the object-oriented behaviors of the
new objects are known, the robot was expected to be able
to generalize the learned words to the new objects. Fig. 11
shows the transition of ratio of correctly answered labels as the
robot interacts with the new objects and identifies their object-
oriented behaviors. The ratio of correctly answered label is
only about 20% at the start, which indicates that existing
methods are helpless for generalizing words to new objects.
As the robot interacted with the new objects, it gradually
generalized the category of object-oriented behaviors to new
objects, and became to answer correct labels. The ability of
word generalization is shown.

VII. C ONCLUSION AND FUTURE WORK

We proposed a lexicon acquisition system for generalizing
names to objects with same forms of object-oriented behavior.
The system was implemented to a robot learning words about
objects with different rolling preference. The robot learned
the rolling behavior for each object, formed word categories
based on the behavior, and successfully generalized the words
to newly introduced objects. For future task, we are planning
to add shape information such as edge histograms into the
visual features of objects. Such visual feature should be more

Fig. 11. Generalization of words to new objects.

suited for acquiring words about solid objects. Introducing
other behaviors such as grabbing objects is also important
since it introduces relation between categories. Considering
the relation between word categories is the next step toward
symbol grounding.

REFERENCES

[1] J. M. Anglin, “Vocabulary development : A morphological analysis” ,
Monographs of the Society for Research in Child Development, no. 238,
58, pp. 1-165, 1993.

[2] W. V. Quine, Word and Object, MIT Press, 1960.
[3] E. M. Markman, Categorization and Naming in Children, MIT Press,

1989.
[4] B. Landau, L. B. Smith, S. S. Jones, “The importance of shape in early

lexical learning”, Cognitive Development, vol. 3, pp. 299-321, 1988.
[5] K. Nelson, R. Russell, N. Duke, and K. Jones, “Two-year-olds will

name artifacts by their functions”, Child Development, vol. 71, no. 5,
pp. 1271-1288, 2000.

[6] D. B. Lenat, “Cyc: A Large-Scale Investment in Knowledge Infrastruc-
ture”, Communications of the ACM 38, no. 11, 1995.

[7] K. Furukawa, I. Kobayashi, T. Ozaki, and M. Imai, “A Model of Chil-
dren’s Vocabulary Acquisition Using Inductive Logic Programming”,
Discovery Science, pp. 321-322, 1999.

[8] S. Harnad, “The symbol grounding problem”, Phys. D, vol. 42, pp. 335-
346, 1990.

[9] D. Roy, “Learning from sights and sounds: a computational model”,
PhD thesis, MIT Media Laboratory, 1999.

[10] L.Steels, and F. Kaplan, “AIBO’s first words: The social learning of
language and meaning”, Evolution of Communication, vol. 4(1), pp.
3-32, 2000.

[11] P. Fitzpatrick and G. Metta, “Early integration of vision and manipula-
tion”, Adaptive Behavior, vol. 11:2, pp. 109-128, 2003.

[12] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. “Adaptive mixtures of
local experts”, Neural Computation, vol. 3, pp. 79-87, 1991.

[13] A. D. Milner, and M. A. Goodale, The visual brain in action, Oxford
University Press, 1995.


