
Advanced Robotics, Vol. 20, No. 10, pp. 1165–1181 (2006)
 VSP and Robotics Society of Japan 2006.
Also available online - www.brill.nl/ar

Full paper

Learning for joint attention helped by functional
development

YUKIE NAGAI 1,∗, MINORU ASADA 2 and KOH HOSODA 2

1 National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika-cho,
Soraku-gun, Kyoto 619-0289, Japan

2 Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Received 7 April 2006; accepted 31 May 2006

Abstract—Cognitive scientists and developmental psychologists have suggested that development
in perceptual, motor and memory functions of human infants as well as adaptive evaluation by
caregivers facilitate learning for cognitive tasks by infants. This article presents a robotic approach to
understanding the mechanism of how learning for joint attention can be helped by such functional
development. A robot learns visuomotor mapping needed to achieve joint attention based on
evaluations from a caregiver. The caregiver adjusts the criterion for evaluating the robot’s performance
from easy to difficult as the performance improves. At the same time, the robot also gradually develops
its visual function by sharpening input images. Experiments reveal that the adaptive evaluation by
the caregiver accelerates the robot’s learning and that the visual development in the robot improves
the accuracy of joint attention tasks due to its well-structured visuomotor mapping. These results
constructively explain what roles synchronized functional development in infants and caregivers play
in task learning by infants.
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1. INTRODUCTION

Human infants are born with immature capabilities. Their vision is blurred, their
movement is uncoordinated and their memory is limited [1, 2]. As they grow, they
develop and improve their capabilities through experiences with seeing, moving
and thinking. Such development in perceptual, motor and memory functions of
infants may help them to learn cognitive tasks. Their immature visual function, for
example, causes them to detect only the important information in a complicated
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environment. They can extract principal features from input information by
using their immature visual capabilities as a filter. Newport [3] asserted that
maturational constraints in infants’ perceptual and memory functions aid their
language learning. Their limited capabilities enable them to extract the essence of
complicated utterances by adults and thereby acquire important language structures.
This ‘less is more hypothesis’ is also considered to hold for learning other cognitive
tasks. Caregivers, at the same time, adapt how they interact with infants as the
infants grow. When infants only have immature capabilities, caregivers use simple
and readily comprehensible behaviors. They amplify their actions, and talk slowly
and rhythmically. Moreover, they adjust how to teach cognitive tasks to infants
and to evaluate infant behavior. The difficulties of cognitive tasks are controlled
from easy to difficult according to improvements in how well infants achieve the
tasks. We suggest that these adaptations by caregivers have the effect of highlighting
the important information in a complicated environment and consequently aid
in learning for cognitive tasks by infants as functional development in infants
does.

Several studies in computational science and robotics have evaluated these theo-
ries from a constructivist viewpoint [21]. Elman [4] empirically showed that func-
tional development in a learner helped language learning. He compared learning in-
volved in two types of neural networks: a fully formed network and one with limited
memory that gradually changed into a fully formed one. His experiments revealed
that only the latter could be trained to process complex sentences. Dominguez and
Jacobs [5, 6] demonstrated the effect of visual development on visual information
processing tasks, e.g., recognition of binocular disparity and motion velocity. They
showed that neural networks with a mechanism for increasing the number of input
neurons achieved higher accuracy in visual recognition tasks than networks with-
out such a mechanism. In one robotic approach, Metta et al. [7, 8] showed that
a developmental mechanism could improve robot’s learning. Their robot with a
mechanism for visual development efficiently acquired the abilities to gaze at and
to reach out to a visual target. Uchibe et al. [9] investigated whether development
not only in a robot but also in the environment helped the robot to learn a soccer
task. They used a mobile robot with a developmental mechanism that increased
the dimension of its state vector and trained it to shoot a ball. The environment
was also controlled to increase its complexity by speeding up a goalkeeper robot
as learning proceeded. They found that development in both the robot and the en-
vironment facilitated learning. All these studies empirically verified the validity
of the ‘less is more hypothesis’. However, it is still an open question as to how
developmental mechanisms affect the learning mechanisms involved in acquiring
sensorimotor mapping. We speculate that they affect how well the mapping is struc-
tured.

We introduce joint attention tasks to investigate what effects functional develop-
ments in both infants and caregivers have on task learning. Joint attention is defined
as looking at an object that someone else is looking at by following the direction of
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his or her gaze [10, 11]. Infants are suggested to acquire this ability by 18 months of
age [10], which means that they develop their perceptual, motor and memory func-
tions as they learn to achieve joint attention. Caregivers are also considered to adapt
how they interact with and evaluate infants. They may adjust the position of an
object to be gazed at so that an infant can easily detect it. We therefore suggest that
joint attention is an adequate task for investigating how functional developments in
infants and caregivers relate to each other, and how these developments affect task
learning.

Although many robotic models for performing joint attention have been built
[12–15], they were fully structured ones, i.e., they did not incorporate any mech-
anisms for learning or functional development. They focused only on establishing
human–robot interactions and were aimed at investigating the psychological effects
of joint attention on communications. In contrast, Triesch et al. [16, 17] and Nagai
et al. [18] developed learning models by which a computational agent or a robot ac-
quired the ability to establish joint attention with a caregiver. They were motivated
by the results of infant studies and designed their models so that learners acquired
their abilities like infants. Their models, however, did not enable the learners and
caregivers to develop their perceptual, motor and evaluation functions. They only
discussed how mature functions enabled the learners to acquire the abilities.

We propose a developmental learning model by which a robot develops its visual
function as it learns to achieve joint attention based on adaptive evaluation by a
human caregiver. The robot improves its visual ability by gradually sharpening its
input images as learning proceeds. This approach is based on evidence that human
neonates have only a 1/30th of the visual acuity of adults and that their acuity
improves as they grow [2]. The caregiver, on the other hand, adjusts the criterion
used to evaluate the robot’s performance of joint attention tasks. He or she changes
the difficulty of the tasks from easy to difficult by reducing the tolerance against the
robot’s output error according to improvements in the robot’s performance. This
corresponds to a caregiver positioning objects so that an infant in the early stages
of development can easily find them [11]. We investigate how these developmental
mechanisms facilitate learning for joint attention and how they affect the structuring
of visuomotor mapping in a robot.

The rest of the paper is organized as follows. First, we define human–robot joint
attention. Then, we describe our developmental learning model for joint attention.
The mechanisms responsible for visual development in a robot, adaptive evaluation
by a caregiver and visuomotor learning by a robot are explained. Next, we show
our experiments for evaluating the effects of functional development on learning
to achieve joint attention. To clarify the effects of development in a robot and a
caregiver, we compare our experimental results with those for three other models
without development in either or both the robot and caregiver. Finally, we conclude
with a discussion of the results and of future directions for additional research.
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Figure 1. Experimental environment for joint attention, where the robot learned to gaze at an object
that the caregiver was viewing by following the direction of her gaze.

2. HUMAN–ROBOT JOINT ATTENTION

We used joint attention as a task for evaluating the effects of functional development
on task learning. Figure 1 shows the experimental environment, where the robot
learned to look at the object that the human caregiver was viewing by following the
direction of her gaze. In each trial, the caregiver replaced the object at different
positions and gazed at it in front of her face. The robot observed the caregiver with
head-mounted cameras, and visually tracked certain directions in the environment
by panning and tilting its camera head. The robot acquired the ability to establish
joint attention with the caregiver by learning mapping from the visual input, i.e.,
camera images, to the motor output, i.e., displacement angles of the camera head.

Note that the process of joint attention discussed here does not involve the robot’s
understanding of sharing attention with the caregiver, but is realized only based
on its visuomotor learning. This corresponds to the first stage of the development
of joint attention in infants. Infants are suggested to first engage in joint attention
without understanding the nature of attention of others and come to comprehend the
attention through these experiences [19]. We supported this idea and investigated
how visuomotor learning for achieving joint attention could be helped by functional
development.

3. DEVELOPMENTAL LEARNING MODEL FOR JOINT ATTENTION

Figure 2 presents a developmental learning model for joint attention, which consists
of a neural network for the robot and a task evaluator for the caregiver. The neural
network enables the robot to acquire the visuomotor mapping needed to achieve
joint attention as it develops its visual function. The task evaluator enables the
caregiver to provide appropriate feedback to the robot regarding its performance of
joint attention tasks. The learning procedure is as follows:
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Figure 2. Developmental learning model for joint attention.

(i) The robot first gazes at the caregiver, who is looking at an object, and captures
a camera image I of her face. The image I is input to the neural network.

(ii) The neural network produces a retinal image by blurring the input image with
a smoothing filter and then generates motor output �θ = [�θpan, �θtilt] based
on the retinal image.

(iii) The robot pans and tilts its camera head based on �θ and looks in a certain
direction in the environment.

(iv) The caregiver detects the output error between the direction of the robot’s gaze
and the direction of the target object, and provides evaluation V to the robot.
Evaluation V has a value of 1 or 0, meaning joint attention has succeeded or
failed.

(v) The robot modifies the connecting weights of its neural network based on V .

(vi) Return to (i).

As learning proceeds, the robot develops its visual function by adjusting the
smoothing filter so that retinal images become less blurred. The caregiver, at the
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same time, adapts the criterion for evaluating the robot’s performance from easy to
difficult.

3.1. Visual development in the robot

The robot develops its visual function by sharpening the smoothing filter between
the input and retinal layers. A camera image I of the caregiver’s face is first input
to the neural network as grayscale information and is then reproduced as a retinal
image through the smoothing filter. The filter W ir

k , where k denotes the learning
steps, is defined as a Gaussian function:

W ir
k = exp

(
−(x − sx)2 + (y − sy)2

2σk
2

)
, (1)

where (x, y), (sx, sy) and σk are a position in the input image, the target position
of the filter and the variance of the filter, respectively. This filter blurs the input
image by being applied to all pixels in the image. The visual function develops
by sharpening the filter as the robot improves its joint attention performance. The
variance σk, which determines the sharpness of the filter, is updated by:

σk = σinit

(
ēk−1 − efin

ē0 − efin

)
, (2)

where ē0 and ēk−1 are the means of the robot’s output error at the beginning of
learning and at learning step k − 1. This means that the filter becomes steeper as
the error decreases. The parameters σinit and efin, given by a designer, define the
initial and end conditions for visual development. For example, a large σinit value
makes the robot start with a more immature visual function, i.e., the robot receives
blurrier images at the beginning of learning. A small efin value makes it difficult for
the robot to fully develop its visual function. Note that σk is updated only when:

ēk−1 < min ēj (0 � j < k − 1), (3)

i.e., visual development is caused by improvements in the robot’s performance of
joint attention.

The mechanism responsible for visual development is illustrated on the left of
Fig. 3, whereas the mechanism responsible for adaptive evaluation by the caregiver,
which is explained in the next section, is on the right. The normal distribution
surface between the input and retinal layers represents the smoothing filter W ir

k ,
through which the retinal image is produced from the input image.

(i) In the early stages of learning, the filter has a large variance σk because the
output error ēk−1 nearly equals ē0 in (2). The robot thus receives a blurred
image on the retinal layer.

(ii) In the later stages of learning, the filter becomes steeper because ēk−1 ap-
proaches efin and the robot receives a sharper image on the retinal layer.
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Figure 3. Mechanisms for visual development in the robot (left) and adaptive evaluation by the
caregiver (right).

As a result, the robot learns using only the principal features of input images in
the early stages of learning whereas it learns using more features in the later stages.
This should enable the robot to acquire well-structured visuomotor mapping needed
to achieve joint attention.

3.2. Adaptive evaluation by the caregiver

The caregiver adjusts the criterion for evaluating the robot’s performance of joint
attention according to improvements in how well it establishes the tasks. After the
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robot has turned its camera head based on the output from its neural network, the
caregiver detects output error ek between the direction of the robot’s gaze and the
direction of the target object. She then determines the value of evaluation Vk:

Vk =
{

1, if |ek| � tk
0, otherwise,

(4)

where tk is the tolerance against the output error. Evaluation Vk = 1 means joint
attention has been successful, while Vk = 0 means failure. In other words, the
caregiver counts the robot’s output as successful joint attention if it gazed at the
object within a center circle with radius tk in its camera image or failure otherwise.
Adaptive evaluation is achieved by changing tk according to the improvements in
the robot’s performance:

tk = ēk−1 − ε, (5)

where ēk−1 is the mean of the robot’s output error at k − 1 and ε is a small value.
This means that the caregiver sets the difficulty of the joint attention task a little
higher than the current level. Note that tk is updated only when:

ēk−1 < min ēj (0 � j < k − 1), (6)

i.e. the criterion for evaluating the robot’s performance becomes more difficult as
learning proceeds.

The mechanism responsible for adaptive evaluation by the caregiver is illustrated
on the right of Fig. 3, where the sectored area represents the tolerance tk against the
robot’s output error. If the direction of the robot’s gaze is within the area, Vk is set
to 1; otherwise it is set to 0.

(i) In the early stages of learning, the caregiver sets a large tolerance tk because
the robot has a large error ēk−1 in (5). She, therefore, allows the robot to easily
acquire a rough visuomotor map to achieve joint attention.

(ii) In the later stages of learning, the caregiver decreases tk because the robot
has reduced ēk−1. She, thus, enables the robot to improve the accuracy of its
visuomotor map.

This adaptive evaluation should accelerate the robot’s learning.

3.3. Visuomotor learning based on task evaluation

The robot learns its visuomotor mapping based on evaluation Vk from the caregiver.
It uses Vk to modify the connecting weights W rc

k between the retinal and visual
cortex layers and W co

k between the visual cortex and output layers:

W
rc,co
k+1 =

{
W

rc,co
k , when Vk = 1

W
rc,co
k ± �W, when Vk = 0,

(7)

where �W denotes a small random value. This means that the neural network
remains unchanged when the robot has received a good evaluation. Otherwise, it
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is slightly modified by random changes to the connecting weights. The weights
are changed randomly because the caregiver cannot teach how the robot should
modify them. She can only inform it whether joint attention has succeeded or failed,
but cannot teach it how to change its visuomotor mapping. In this way, the robot
gradually improves the accuracy of its mapping.

4. EXPERIMENTS

4.1. Method

We experimentally evaluated how functional development affected learning. To
conduct learning experiments off-line, we had the robot shown in Fig. 1 acquire
input–output datasets beforehand. The input data were the camera images of the
caregiver’s face detected with 30 × 25 pixels. The corresponding output data
were the displacement angles of the pan and tilt of the robot’s head when it gazed
correctly at the object that the caregiver was viewing. The examples of input images
shown in Fig. 4a were captured when the caregiver was gazing at an object by
panning from −40◦ to 40◦ and tilting from −20◦ to 20◦. The angles correspond to
the motor output acquired when the robot gazed at the same object. Figure 4b shows
the retinal images generated from the input images in Fig. 4a; only five images are
presented as examples. The robot started learning with blurred images like these.
Seventy-five datasets, five datasets at each position, were acquired in advance and
used repeatedly throughout learning experiments. The neural network consisted
of 750 input neurons, 750 retinal neurons, seven visual cortex neurons and two
output neurons. The parameters were set to σinit = 3.0, efin = 0.05, ε = 0.02 and
�W = 0.007 by trial and error.

Figure 4. Examples of input and retinal images.
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Figure 5. Conceptualizations of comparative learning models with and without a developmental
mechanism in robot and/or caregiver.

We compared the performance of our learning model against that of three other
models to evaluate how effectively functional development improved the robot’s
ability to achieve joint attention. Figure 5 shows conceptualizations of (a) the
proposed model, called the RC-dev model, and three comparative models: (b) the
R-dev model, (c) the C-dev model and (d) the Mature model. The RC-dev model
has a developmental mechanism in both the robot and caregiver. The R-dev and
C-dev models have a developmental mechanism in only the robot or caregiver,
respectively, and the Mature model has no such mechanism. The caregiver in the
R-dev and Mature models and the robot in the C-dev and Mature models are instead
equipped with mature functions. That is, from the beginning of learning, the robot
receives retinal images as clear as input images. The caregiver sets the criterion for
evaluating the robot’s performance to the most difficult level and never changes this
over the learning period. We conducted learning experiments to evaluate (i) learning
speed and (ii) accuracy in joint attention tasks employing these four models.

4.2. Results

4.2.1. Learning speed. We first compared the learning speed with the four
models. We considered that functional development in the robot and/or caregiver
would affect the learning speed for joint attention.

Figure 6 shows the changes in the output error over learning. The horizontal and
vertical axes denote the learning steps k and the normalized output error ēk in the
neural network, where ēk = 0.1 means that the network has 9◦ of error between the
direction of the robot’s gaze and the direction of the target object. The four curves
correspond to the four models in Fig. 5. Comparison of the results showed that
adaptive evaluation by the caregiver accelerated learning for joint attention. The
output error in the RC-dev model decreased faster than that in the R-dev model
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Figure 6. Changes in normalized output error ēk over learning.

and the output error in the C-dev model decreased faster than that in the Mature
model. The learning speed was especially accelerated in the early stages of learning,
although that in the later stages was almost the same. This suggests that adaptive
evaluation enabled the robot to rapidly acquire a rough visuomotor map to achieve
joint attention and to refine it as learning proceeded. In contrast to the acceleration
caused by adaptive evaluation, the comparison of the results also showed that visual
development in the robot decelerated learning. The learning speed with the RC-dev
and R-dev models was lower than that with the C-dev and Mature models. The
visual development decelerated learning because the blurred retinal images lacked
the detailed information in the input images. As a result, the robot could not estimate
the exact direction of the caregiver’s gaze in the early stages of learning.

4.2.2. Relationship between learning speed and trigger for adaptation. How
can the trigger for adaptation in evaluating the robot’s performance affect the
acceleration of learning? We assumed that appropriate timing for updating the
tolerance tk accelerated learning more. We thus compared the learning speed of
the RC-dev and C-dev models, in which tk was updated when the robot’s output
error ēk had decreased, with that of the RC′-dev and C′-dev models, in which tk was
updated based on a given clock.

The results for the RC-dev and C-dev models are shown in Fig. 7a, and those for
the RC′-dev and C′-dev models are shown in Fig. 7b. The solid and dashed curves
denote changes in ēk and tk, respectively. We can see in Fig. 7a that tk decreased
with the improvements in ēk while in Fig. 7b it decreased linearly. The clock trigger
for tk in Fig. 7b was designed through trial and error. These results showed that
adaptive evaluation triggered by a given clock accelerated learning although its
effectiveness strongly depended on the timing. The learning speed with the C′-dev
model was higher than that with the C-dev model because the decrease in tk was
synchronized with the decrease in ēk. However, the learning speed with the RC′-
dev model was not as high as that with the RC-dev model because the decrease in tk
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Figure 7. Relationship between changes in normalized output error ēk and tolerance tk .

was too rapid. This means that adaptation in task evaluation that is not synchronized
with the improvements in task performance may not accelerate learning. Therefore,
we suggest that the timing for adaptation in evaluating tasks should be designed to
match the improvements in task performance.

4.2.3. Task accuracy. We next compared the accuracy in joint attention tasks
after learning. Although visual development in the robot had no advantages in
evaluating learning speed, we expected it would produce good results for task
accuracy.

Figure 8 shows the normalized output errors ē in the acquired neural networks
when unknown inputs were received after learning. The four bars correspond to
the four models in Fig. 5. The unknown input data were 45 images of the same
caregiver’s face captured when she was looking in directions different from those
in the learning experiments. By comparing the results in each graph, we can
see that visual development in the robot improved the accuracy in joint attention
tasks. The output error for the RC-dev model (M = 0.128, SD = 0.081) was
less than that for the C-dev model (M = 0.171, SD = 0.087) and the error for
the R-dev model (M = 0.125, SD = 0.045) was less than that for the Mature
model (M = 0.189, SD = 0.067). The difference in normalized output error
ē � 0.05 equals 4.5◦ error in the displacement angles. Tukey’s method showed
that there were significant differences between the models with visual development
and those without it (P < 0.05). We attributed the improvement in task accuracy
to the immature visual function. It enabled the robot to gradually extract the
principal features of the input images, to learn to achieve joint attention in stages
and consequently to acquire a well-organized visuomotor map.

4.2.4. Relationship between task accuracy and structure of visuomotor mapping.
How was the structure of visuomotor mapping affected by visual development? We
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Figure 8. Normalized output error for unknown inputs after learning. ∗P < 0.05, calculated using
Tukey’s method.

Figure 9. Activities of visual cortex neurons responding to unknown inputs.

postulated that the improvement in accuracy for joint attention tasks was due to
well-structured mapping. To verify this, we compared the internal representations
of the acquired neural networks.

Figure 9 plots the mean activities and standard deviations of the visual cortex
neurons when the neural networks received unknown inputs after learning. The
horizontal axis denotes the labels for the neurons, and the vertical axis denotes
their activities. The unknown data were the same as in the previous experiment.
We can see from the results that the number of neurons for which the standard
deviation equaled zero was increased by visual development. There were two
neurons with zero standard deviation each in the RC-dev model (nos 2 and 3)
and R-dev model (nos 3 and 6), whereas there was only one in the Mature model
(no. 2). The C-dev model did not have any such neurons. Zero standard deviation
means that the neurons had not been used for joint attention tasks. In other words,
only neurons with large variances had been used to recognize input images. The
means for the number of the unutilized neurons were 1.2 in the RC-dev, 1.2 in the
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R-dev, 0.7 in the C-dev and 0.6 in the Mature models. We thus confirmed that
the internal representations of visuomotor mapping were more downsized by visual
development.

The mechanism for downsizing visuomotor mapping is considered to be as
follows. First, the maturational constraint in the visual function enabled the robot
to extract only the principal features from the input images. As we can see from
Fig. 4b, the blurred retinal images retained variances mainly in the horizontally
distributed images. This enabled the robot to learn by first mainly focusing on
the horizontal differences. As learning proceeded, the robot gradually came to
detect the vertical differences as well by receiving sharper retinal images and to
use both differences in learning. As a result, it learned to achieve joint attention
in stages, i.e., first horizontally and then vertically. This is why the robot with
visual development acquired downsized and well-organized visuomotor mapping,
and consequently improved its accuracy in joint attention tasks.

4.3. Joint attention experiments

Finally, we conducted joint attention experiments in an actual environment shown
in Fig. 1 to evaluate the effectiveness of the acquired neural network. The robot was
embedded with a neural network learned with the RC-dev model. The caregiver,
the same person as in the learning experiments, sat in front of the robot, placed an
object at random positions and gazed at it. The timing at which the robot’s camera
captured an image of her face and turned its head based on the output from the
neural network was controlled by the caregiver.

Figure 10 shows the examples of camera images for when the robot tried to
establish joint attention. The rectangle in each denotes the input image for which
grayscale information was input to the neural network. The line indicates the motor

Figure 10. Examples of camera images for when the robot tried to achieve joint attention. Rectangles
denote input image and lines denote motor output, where horizontal and vertical components
correspond to displacement angles for panning and tilting.
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output by which the robot turned its head. The horizontal and vertical components
of the line correspond to the displacement angles for panning and tilting. Note
that the line does not show the direction of the caregiver’s gaze, but the motor
output from the neural network. These results showed that the neural network could
generate appropriate motor output to follow the direction of the caregiver’s gaze.
The success rate for joint attention was 95% (=19/20 trials), where a trial was
counted as successful if the robot gazed at the target object within a centered circle
of the camera image. We concluded that the proposed model enabled the robot to
acquire appropriate visuomotor mapping to achieve joint attention.

5. DISCUSSION AND FUTURE WORK

This paper presented a developmental learning model for joint attention based
on the theory that development helps learning. The model enabled a robot to
develop its visual function as it improved its performance of joint attention. A
caregiver provided appropriate feedback to the robot according to the improvements
in the robot’s performance. Employing the model, we examined how functional
development in the robot and caregiver facilitated robot learning. Our experimental
results revealed that:

• Adaptive evaluation by a caregiver accelerated the speed of learning, especially
when the criterion for evaluation was tightened as the robot’s performance
improved.

• Visual development in the robot improved its task accuracy by enabling it to
acquire downsized and well-organized visuomotor mapping.

Several researchers in the fields of cognitive science and developmental psy-
chology have pointed out the importance of development in task learning by in-
fants [3, 11]. They suggested that development in perceptual, motor and memory
functions of infants as well as adaptive evaluation by caregivers may help infants
to learn cognitive tasks. However, the mechanisms for how development affects
learning have not been completely uncovered. Our experimental results empirically
demonstrated the theory that development helps learning and provided explanations
for the mechanisms. Caregivers assist infants to learn cognitive tasks by controlling
the difficulty of the tasks so that infants learn in incremental steps. This enables
infants to rapidly acquire rough coordination needed to perform the tasks. The de-
velopmental capabilities of infants themselves also play a role. Their immature
perceptual, motor and memory functions in early infancy enable them to deal only
with more important information and to increase the complexity of information they
deal with as they develop. An interesting finding from our experiments is that visual
development helped the robot to learn to establish joint attention first horizontally
and then vertically, as in infants. Infants are also suggested to first come to follow
the direction of another person’s gaze when he/she has turned his/her head horizon-
tally and then vertically [20]. This correspondence in learning between the robot



1180 Y. Nagai et al.

and infants should take us somewhat closer to revealing the learning mechanisms of
infants [21].

We intend to modify the learning model so that a robot can use various image
features, such as edges and motion, as input information. As the model here used
only grayscale information from camera images, the robot was overly sensitive to
lighting conditions and differences in the facial features of the caregiver. We expect
that using various image features will enable the robot to acquire more generalized
and robust capabilities. Furthermore, it should enable us to understand the roles
that image features play in learning for joint attention. We also intend to investigate
the extent to which motor and memory functions develop. Whereas our robot only
developed perceptually, human infants develop their motor and memory functions
as well. Development of these functions is considered to be intricately interrelated,
and they all facilitate learning. Therefore, we intend to investigate how these
developments assist task learning.
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