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Abstract. Most current mobile robots are designed to determine their actions
according to their positions. Before making a decision, they need to localize them-
selves. Thus, their observation strategies are mainly for self-localization. However,
observation strategies should not only be for self-localization but also for decision
making. We propose an observation strategy that enables a mobile robot to make a
decision. It enables a robot equipped with a limited viewing angle camera to make
decisions without self-localization. A robot can make a decision based on a decision
tree and on prediction trees of observations constructed from its experiences. The
trees are constructed based on an information criterion for the action decision, not
for self-localization or state estimation. The experimental results with a four legged
robot are shown and discussed.
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1. Introduction

Many active sensing methods for state space estimation have been pro-
posed (Mihaylova et al., 2002). Most proposed methods for a mobile
robot focus on or are based on estimation and tracking of positions
of the robot itself. Moon et al. (Moon et al., 1999) have proposed a
viewpoint planning method for a robot to reach a target position in less
time by reducing the need for frequent observations for self-localization.
Their method plans the viewpoints so that the estimation error of
the robot position will be small enough to avoid hitting obstacles and
walls. Kristensen (Kristensen, 1997) has proposed a planning method
for sensing actions. A mobile robot selects the sensing actions that
maximize an estimated utility, which will be given for (non-sensing)
actions after the sensing. Jensfelt et al. (Jensfelt et al., 2000) have
proposed a planning method based on Dynamic Programming. Based
on predefined cost functions for sensing and resulted failures, such as
hitting a wall, a robot makes the plan of the minimum cost.

Other than the use of the position error and utility estimation, the
use of entropy of the state estimation has been proposed. The state
or the position of the robot is represented with probabilities and the
entropy is calculated for the probabilities. The entropy reflects the un-
certainty of the state. Active sensing methods that selects sensors based
on entropy are proposed for discrimination of an object (Hutchinson
and Kak, 1989), for discrimation of a material of an object (Sakaguchi,
1994), and for target localization (Wang et al., 2004). Roy et al. (Roy
et al., 1999) have proposed path planning for a navigation task of a mo-
bile robot based on entropy with Markov localization using occupancy
grids as a world model representation. Fox et al. (Fox et al., 1998)
have proposed an active localization method. A mobile robot selects a
motion for self-localization and navigation based on an utility function
constructed from the entropy of the position itself and the utility of
actions. They also used Markov localization using occupancy grids.

The above methods for a mobile robot rely on the self-localization
to make decisions. However, is self-localization mandatory for decision
making in a mobile robot? Humans do not seem to have adopted such
a strategy. For example, when we cross a street, we do not seem to
localize ourselves precisely in a crosswalk but seem to position our-
selves within the boundaries of the crosswalk. In other words, we collect
and use minimal information not for self-localization but for decision
making. Mobile robots can also adopt an observation strategy that is
independent of self-localization or state estimation but useful for action
decision.
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Tani et al. (Tani et al., 1997) have experimented with the task of
watching two visual targets using a camera with a limited viewing
angle. The robot predicts the position of the visual targets and switches
its visual attention depending on the accuracy of the prediction. How-
ever, the robot’s action (wall following) is fixed and the issue can
be regarded as a view prediction problem on a route. Reinforcement
learning, including sensing actions, has been proposed (Whitehead and
Ballard, 1990; MaCallum, 1996; Cassandra et al., 1996; Miyazaki and
Kobayashi, 1998; Busquets et al., 2002). Theoretically, actions directly
related to both the task and sensing are optimally selected for the task
completion. The most serious drawback of these the methods is the
amount of time needed for the learning (Whitehead, 1991).

In this paper, we propose a method for a robot, which is equipped
with a limited viewing angle camera that has panning and tilting facil-
ity, to make a decision without explicitly localizing itself. The premise
of our observation strategy is not for self localization but for decision
making, that is, to minimize observation as much as possible in decision
making. A decision tree and prediction trees are constructed based
on the entropy of the action decision or the information gain from
training data in a view-based approach. That means the robot does
not need to explicitly localize itself. By constructing a decision tree,
the robot knows which landmark to observe first. By using prediction
trees based on information criterion, less time for observation through
decision making will be needed.

The rest of the paper is organized as follows: We first describe the
task and assumptions, then we describe the proposed method. Next,
we show the experimental results with a real robot. Finally we discuss
the future issues and draw conclusions.

2. Task and assumptions

We assume the following for the robot, environment, and given data:

1) The viewing angle of the robot’s camera is limited and the robot
cannot always acquire sufficient information to decide immediately
what to do.

2) There is a sufficient number of landmarks to be observed in order
to decide what to do at any location, and the robot can acquire
sufficient information by panning its camera.

3) The landmark to be observed for decision making depends on the
situation.
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Figure 1. A legged robot for the RoboCup 99 Sony legged robot league.

4) The action and the information are quantized to construct a deci-
sion tree, and sufficient training data to calculate information gain
and to construct the tree is prepared. We use a direct teaching
method to collect this kind of training data. Although the pro-
posed method can generally handle other kinds of sensors including
logical ones, in the following sections we only deal with landmark
observations as sensor information for the simplicity of explanation.

We use a legged robot with a limited viewing angle camera which was
originally used for the RoboCup 99 Sony legged robot league (Figure 1).
The camera of the robot is embeded in its nose. The viewing angles of
the camera are about 53 degrees in width and 41 degrees in height.
The images are 88 pixels in width and 59 pixels in height. Each leg
and the neck have three degrees of freedom. The robot stands still and
only rotates the pan joints of the neck when it observes the landmarks
in order to make a decision. Additionally it rotates its tilt joint for
decision making when it observes the ball. The robot can rotate the
pan joint from -90 degrees to 90 degrees and the tilt joint from -90
degrees to 10 degrees.

The experimental field is shown in Figure 2. In the field, there are
eight landmarks and a ball. The landmarks are the target goal (TG),
the robot’s own goal (OG), the northwest pole (NW), the northeast
pole (NE), the center west pole (CW), the center east pole (CE), the
southwest pole (SW), and the southeast pole (SE). All of the landmarks
and the ball are distinguished by their colors. The task is to push the
ball into the target goal based on the visual information. The robot has
to take an appropriate action according to its location and its position
relative to the ball, for example, searching for, approaching, or turning
around the ball.
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Figure 2. A) Photo of the experimented field and B) size of the field (same as the
one for the RoboCup 99 Sony legged robot league). Cross and circle marks are for
the first experiment.

3. The method

In the following section, we show that the uncertainty of deciding what
to do is quickly reduced by using information gain to decide which
landmark to observe. Next, we show that when the action decision tree
is constructed by a classifier tree method based on the information gain
criterion, the order of landmarks in the tree is the same as the order of
observation. Then, we show how a robot makes decisions and calculates
action and observation probabilities.

The observation strategy we propose here is to observe landmarks,
starting from the landmark of highest information gain until one of
the action probabilities exceeds a certain threshold. Here, the action
probability is the probability that the action should be taken. The
observation probability is the probability that the landmark is observed
in one direction. We calculate observation probabilities based on the
previous action and observations. For the calculation we use obser-
vation prediction trees constructed by the same method used for the
construction of the action decision tree.

3.1. Information gain as an observation criterion

Suppose we have m landmarks. The observation of the landmark is
quantized into q kinds of viewing categories including a non-visible
situation, and r kinds of actions. A training datum consists of a set
of observations of the landmarks at the current position and the ac-
tion to accomplish the task, and we have n training data points. The
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occurrence probability of the k-th action pk is given by

pk =
nk
n
, (1)

where nk denotes the number of actions k in the training data.
Therefore, the entropy H0 for the action probability is given by

H0 = −
∑

k

pk log2 pk. (2)

The entropy increases when the action decision is more ambiguous.
It becomes the highest when all pks are equal to each other, that is
pk = 1/n and becomes zero when one of the pk equals one. Next, we
calculate the occurrence probabilities of actions after the observation
of each landmark. We denote the number of times action k was taken
as nijk when the landmark i is observed as the viewing category j. The
occurrence probability pijk of action k becomes,

pijk =
nijk∑
k nijk

. (3)

Here, the entropy of the action after observation is

hij = −
∑

k

(pijk log2 pijk). (4)

The hij decreases when the ambiguity becomes lower. The probability
pij that the landmark i is observed as viewing category j is given by

pij =
∑

k nijk∑
j

∑
k nijk

. (5)

Then, the entropy Hi after the direction of the landmark i is known is

Hi = −
∑

j

pijhij , (6)

and the information gained by observing the landmark i is

Ii = H0 −Hi. (7)

The Ii is higher if the observation reduces ambiguity more. By ob-
serving the landmarks in decreasing order of information gain, we can
quickly reduce the ambiguity and determine the action to take.
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3.2. Construction of action decision and prediction trees

ID3 (Quinlan, 1979) is an algorithm to build a decision tree. To con-
struct a decision tree, we prepare a training data set in which each
datum has the discrete attribute values that are classified in advance.
We calculate each information gain Ii to identify the class when the at-
tribute i becomes known. Then, we divide the data set by the attribute
with the largest information gain. This is a sort of branching in terms
of the attribute values in the decision tree. We continue the division
and branching by the information gain until each sub-data set includes
one class.

Table I shows an example training data set. There are three at-
tributes A, B, and C, and each takes one of three values α, β, or γ.
The x, y, and z are the three classes to identify. Then, the entropy for
the class identification is

H0 = −
∑

k

pk log2 pk

= −2
4

log2

2
4
− 1

4
log2

1
4
− 1

4
log2

1
4

=
3
2
. (8)

Information gain for class identification by the attribute A is calculated
by

HA = p{A=α}h{A=α} + p{A=β}h{A=β}

=
2
4
{−p{x|A=α} log2 p{x|A=α}}

+
2
4
{−p{y|A=β} log2 p{y|A=β} − p{z|A=β} log2 p{z|A=β}

=
1
2
,

IA = HA −H0 = 1. (9)

Information gains for class identification by attribute B and C are
0.3 and 0.5, respectively. Then we divide the data set by the value
of attribute A into a) data 1 and 2 and b) data 3 and 4. Both the data
1 and 2 have class x and the entropy is 0. The data subset with numbers
3 and 4 has entropy 1.0 for class identification and the information gains
are 0.0 by the attributes A and B, and 1.0 by the attribute C. We divide
the data set by the attribute C and the construction of the decision tree
ends. Figure 3 shows the final decision tree for class identification.

We build an action decision tree regarding an action as a class and
an observed direction of each landmark as an attribute. Table II shows
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Table I. An example training data for ID3. The α, β, or
γ indicates the value of the attribute for the datum. The
x, y, or z indicates the class to be identified.

No. attribute A attribute B attribute C class

1 α β α x

2 α α β x

3 β α α y

4 β α β z

attribute A

class x

class y class z 

attribute C

α β

α β

Figure 3. The example classification tree by ID3. Circles indicate branches by the
attributes. Boxes indicate the identified classes.

an example data set. There are three landmarks A, B, and C. Each
attribute is the direction α, β, or γ in which the landmark is observed.
The x, y or z indicates the action to take for each observation. Since
the probabilities before observation px = 0.2, py = 0.4, and pz = 0.4,
H0 is 1.52. By calculating each pijk, we have expected information gain
from observation of each landmark for the action decision, IA = 0.97,
IB = 0.72, and IC = .52. The ordering in the decision tree is landmark
A, B, then C, and the tree is shown in Figure 4. At each branch, the data
set is divided by the observed direction of the landmark. Although the
original ID3 method iterates the calculation of the information gain
at each branch and the orders of the landmark will be different in
different sub-trees, we fixed the order in the tree for all the sub-trees to
save memory consumption and to simplify the probability calculations.

In the action decision tree, the branches are located in decreasing
order of information gain from the root to the leaves. Then, observation
of the landmarks at the branches from the root to the leaves means
that the observations are made in the order of importance based on
information gain.

In an experiment with real robots, sometimes appropriate actions
are different although the observations are the same because of the
quantization of the observing directions. In such cases, for each action
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Table II. An example of training data. α, β, or γ indi-
cates the observed direction of each landmark. x, y, or z
indicates the action to take for the observation.

Landmark A Landmark B Landmark C Action

α α α x

β α α y

γ β α y

α γ α z

α β β z

α

Take 

  action 

α β γ

β γ

x z z y y

Landmark A

Landmark B

Figure 4. An example of an action decision tree. The ellipses indicate the observation
of the landmark. α, β, or γ indicates the observed direction of each landmark. x, y,
or z in a box indicates the action to take for the observation.

which has the same observation, we count the number of the training
data, prepare a leaf, and record the ratio in the training data of the
same observation. We regard the ratio as the probability that the action
should be taken when the same observation is given.

We construct the landmark observation prediction trees in the same
manner. To build a prediction tree for landmark i, we regard the next
observed direction of landmark i (α, β, or γ for the example) as a class,
and currently observed directions of landmarks and the action as at-
tributes. Figure 5 shows the prediction tree for landmark A constructed
from the training data set in Table II.

3.3. Decision making

The robot iterates observations and actions as shown in Figure 6. The
robot determines its action based on the observation probabilities. The
observation probabilities are calculated from the observation at the
previous position (step 1) and observation at the current position (step
3). If one of the action probabilities exceeds a certain threshold, the
robot takes that action (steps 5 and 8). Otherwise, until one of them
exceeds the threshold, it continues to try to observe the landmark
whose observation prediction probability distribution is uniform (large
entropy in the observation probabilities). The landmarks are selected

main.tex; 21/09/2005; 12:39; p.9



10 N. MITSUNAGA and M. ASADA

action

α β

α α β

0.3 0.7
β γ

x

Landmark A

Landmark B Landmark B

Landmark C Landmark C

Landmark A

         at t+1 β γ γα

Figure 5. An example of a prediction tree for the landmark A. Ellipses indicate
branches by observed directions of the landmarks. Boxes indicate the predicted
direction of the landmark A at next time step.

in the order in which they were placed in the action decision tree;
that is, the landmark is chosen by the information criterion. When
the robot checks the landmark, observation of the peak direction of
the probability profile may speed faster decision making. Otherwise it
uses some fixed strategy. In the following experiments, we prepared the
observation from left to right as the fixed strategy.

3.4. Calculation of the probability distribution

Here, we denote the probability that the landmark i was observed in
the viewing direction j at time t as pLij(t) (i = 1, ...,m, j = 1, ..., q), the
probability that the action k was taken at time t as pak(t) (k = 1, ..., r),
and the probability that the action k should be taken by the training
data at t as p̂ak(t) (k = 1, ..., r).

Calculations of the probability distributions are as follows: If the
landmark i is currently observed in the quantized viewing direction J ,
we assign the probability 1.0 to pLiJ(t) and 0 to the others (pLij(t) = 0
(j 6= J)). When the previously taken action was K, set paK(t − 1) = 1
and pak(t− 1) = 0 (k 6= K). The probabilities of the landmarks, which
are not currently observed, are calculated by the prediction trees using
the probability distributions pLij(t − 1) and pak(t − 1). We assign the
probability 1.0 to the quantized invisible direction and 0 to the others
if the landmark cannot be observed even though the robot has looked
for it.

Following a landmark prediction tree from the root to one of the
leaves gives, 1) the condition of the landmark ’s directions and the
action at time (t − 1) which is given by logical product; and 2) the
consequent landmark direction at time t. To calculate the probability to

main.tex; 21/09/2005; 12:39; p.10



HOW A MOBILE ROBOT SELECTS LANDMARKS 11

1. Calculate the observation probabilities of landmarks by
the prediction trees from the observation probabilities at
the previous position.

2. Observe the landmarks which are seen in currently observing
direction.

3. Update the observation probabilities.
4. Calculate the action probabilities p̂ak(t) from the observation

probabilities.
5. If one of the action probabilities p̂ak(t) exceeds threshold,

it is the determined action, then go to step 8.
6. Determine the next landmark to observe. The landmark,

a) is not observed at current position, but
b) has higher information gain (or near to the root), and
c) its observation probabilities are equally large in two or more

directions (large entropy in the observation probabilities).
7. Change the observing direction to search for the next landmark

and go to step 2.
8. Take the determined action and change the observing direction to watch

the landmark on the root of the decision tree (that is the ball in
following experiments).

9. Stop locomotion.
10. Go to step 1.

Figure 6. The pseudo code for a robot to make decisions

reach each leaf, we change the logical product to an arithmetic one and
conditions to probabilities at time (t−1). We consider the summation of
the probabilities of the leaves of the same direction as the probability of
the direction at time t. For example, if the prediction tree of landmark
A is the tree shown in Figure 5, then

pLAα(t) = pax(t− 1)pLAβ(t− 1)pLBβ(t− 1)× 0.3,

pLAβ(t) = pax(t− 1)pLAα(t− 1)pLBα(t− 1)pLCβ(t− 1),

pLAγ(t) = pax(t− 1)pLAβ(t− 1)pLBα(t− 1)pLCγ(t− 1),

+pax(t− 1)pLAβ(t− 1)pLBβ(t− 1)× 0.7. (10)

To calculate the action decision probability p̂ak(t), we use these prob-
ability distributions pLij(t), and follow the action decision tree in the
same manner.
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Figure 7. The quantization for A) landmarks and B) the ball. The shaded region
means ‘o’ non-observable region.

4. Experimental results

Each landmark’s observation is quantized into eight directions:
(−90◦,−65◦), [−65◦,−40◦), [−40◦,−15◦), [−15◦, 15◦), [15◦, 40◦),
[40◦, 65◦), [65◦, 90◦), and one invisible situation which is denoted ‘o’
owing to the limited panning angle or because it is too far to observe
(see Figure 7). The ball observation is quantized into eleven directions:
the product of five pan angles, (−90◦,−45◦), [−45◦,−12◦), [−12◦, 12◦),
[12◦, 45◦), [45◦, 90◦), and two kinds of distances (near or far, divided at
30◦ below the level), and one invisible situation (denoted as ‘o’). We
treat the ball as a special landmark, which does not move unless the
robot pushes it. Therefore, the observation of the ball can be predicted
by its previous location in the image and the action of the robot. Note
that for the ball prediction tree, we cannot use other landmarks because
it may move in the field.

We have collected the training data by directly sending action com-
mands through a PC connected to the robot. During the teaching
phase, the robot was placed in the field and we repeated the following:

1. the robot looks around to observe the direction of the landmarks
and the ball,

2. a human trainer orders the robot to take a specific action,

3. the robot performs that action and stop.

If the trainer made a mistake, the datum was marked and removed from
the data set for construction of the action decision tree. The observation
of the robot includes noise caused by the image processing. The max-
imum distance from which the robot is able to observe each landmark
(both the ball and the landmarks except for the goals) is about 1.8[m],
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and it changes slightly depending on the lighting conditions. So there
were cases in which a landmark had not been observed from almost the
same position.

When it is running and making decisions with the trees, the robot
searches for landmarks and the ball (if they are invisible) when the
peak action probability is below 0.60. It watches or searches for the
ball during both teaching and tree-based decision making except for
landmark search periods.

Since some situations may not be represented in the training data,
the sum of the probability distribution

∑N
i=1 pi might be less than one.

To avoid this, we added (1 −∑N
i=1 pi)/N to each pi. N indicates the

size of the distribution.
We conducted two experiments. One is a test with a small set of

teaching data, to see how the robot makes decisions. The second is to
see how the trees change with a larger set of teaching data. We used
the trees in the games of the RoboCup 99.

4.1. Experiment 1

In the field (Figure 2), we experimented with the task of pushing a
ball into the goal. The ball was placed in front of the goal (the circle
before the target goal in the figure) and the robot was put at one of
three cross marks in the middle of the field at the start of each trial. We
prepared three kinds of actions: forward, left-forward, and right-forward
walking based on the trot gait for Experiment 1. Each action consists of
four walking cycles of 4.8 seconds. With the forward action, the robot
walks about 0.45[m] in 4.8 seconds. We chose a distance of about 1.5
times the size of the robot’s length (about 0.3[m]) for one action. Also
the observation (discrete directions of the landmarks) changes at most
places with one action.

For each starting position, we trained five times and obtained eighty
data points to construct trees. The robot followed the same tracks for
both the teaching phase and the phase when the robot makes decisions
by the trees. We show part of the action decision tree in Figure 8. If the
ball is observed in the left front direction (the direction b), the action
changes according to the direction of the target goal (the direction
c, d, or f). Table III shows the sizes of the action decision tree and
prediction trees. The size of the action decision tree is as follows: the
number of leaves is 43, the minimum depth is 1, the mean depth is
4.91, and the maximum depth is 8. The sizes of the prediction trees for
landmarks SW and SE become small since most of them are behind the
robot and not observed so much. Tables IV and V show the orders of
the landmarks according to the information gain in the action decision
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Figure 8. Part of the action decision tree (Experiment 1). F, L, and R mean forward,
left forward, and right forward, respectively.

Table III. Depth of the prediction trees (Experiment
1).

tree # of min dep. mean dep. max dep.

for leaves

ball 52 2 2 2

OG 13 1 4.23 8

TG 44 1 5.39 8

SE 6 1 2 3

SW 1 0 0 0

CE 28 2 4.69 8

CW 11 1 3.91 8

NE 51 1 5.96 8

NW 54 2 5.91 8

tree and the prediction trees. The number 1 indicates the root of a tree
and the largest information gain, while 8 indicates the leaf of the tree
and the least information gain. In Tables IV and V, “ball” and “act”
indicate the previous direction of the ball and the previous action, TG,
OG, NW, NE, CW, CE, SW, and SE indicate the previous direction
of the landmarks, respectively. We see that the ball is at the root of
the action decision tree and the previous action is near the root of the
prediction trees. We show a sequence of the robot’s actions with these
trees in Figure 9.
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Table IV. The order of information for the action
decision tree (Experiment 1).

1 2 3 4 5 6 7 8

ball TG NE NW CW CE OG SE

Table V. The order of information for prediction trees (Experi-
ment 1).

tree for 1 2 3 4 5 6 7 8

ball ball act

OG act NE TG NW CW CE OG SE

TG TG act NE NW CE OG CW SE

SE act CE NE OG NW TG CW SE

SW -

CE act NE TG CE NW CW OG SE

CW TG act NE NW CE CW OG SE

NE NE act NW TG CE CW OG SE

NW act NE TG NW CE OG SE CW

Next, we show examples of action sequences using these trees. From
the starting position in the center of the field, the robot selected the
forward action four times. In this experiment, the ball and the target
goal were observed at every moment for decision making. The probabil-

Figure 9. Robot actions with the action and decision trees.
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Figure 10. Probability distributions in Experiment 1-1 (The gray level of each box
indicates the probability; black is 1 and white is 0) .

ity distributions of the landmark observation predictions and the action
decision are shown in Figure 10. The intensity of each square indicates
the probability. A white square means the probability is 0 while a black
one means 1. The row of ‘ball’ in the figure indicates the observation
probabilities of the ball directions by the observation or the prediction
by the tree. The rows of OG, TG, SE, SW, CE, CW, NE, NW indicate
the observation probabilities of the landmarks. The column of ‘not seen’
indicates the observation probability that the ball (or a landmark) can
not be observed (direction ‘o’) even if the robot pans its camera. Other
squares in the ball row indicate the probabilities of the directions, a,
b,... , e (the lower row) and f, g,... , j (the upper row) from left to
right. The squares in the landmark rows indicate the probabilities of
directions a, b,... , g from left to right. The row of ‘action’ indicates the
action probability and F, L, and R indicate forward, left forward, and
right forward, respectively. The robot pans its camera at the beginning
of each sequence. The first probability boxes are the ones of the first
decision after the robot panned the camera. From Figure 10, we can
see that at the time of the third and the fourth decisions, there was
some ambiguity in the observation probabilities, but the robot could
make decisions without panning its camera because one of the action
probabilities exceeded the threshold.

The robot may take different actions from the same starting position.
This is owing to the quantization of the observation, slight change of
the lighting condition, and variance of the walking. In this example,
the robot started from the center cross mark on the field as in the first
example, but then took other actions instead i) forward; ii) forward;
iii) landmark observation; iv) forward, v) landmark observation; vi) left
forward; vii) forward; and viii) forward. In this experiment, the ball and
the target goal were observed at every moment for decision making. The
probability distributions of landmark observation predictions and the
action decisions are shown in Figure 11. At the time of the third and
the fifth decisions, action probabilities became uniform and the robot
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Figure 11. Probability distributions in Experiment 1-2.

had to pan its neck to observe landmarks. However, at the time of
the seventh and the eighth decisions, there was some uncertainty in
observation probabilities, but the robot could make decisions without
additional observation.

Here is another example starting from the right cross mark on the
field. In this example, the robot took the actions, i) left forward; ii)
landmark observation; iii) forward; iv) forward; and v) left forward.
The ball and the target goal were observed at every moment for de-
cision making. The probability distributions of landmark observation
prediction and the action decision are shown in Figure 12. At the time
of the second decision, action probabilities became uniform, but at the
time of the fourth and the fifth decisions, the robot could make decisions
even though there was some ambiguity in observation probabilities.

We show the number of re-observations in Table VI. Each number in-
dicates the number of trials, total number of steps, re-observations, and
the rate of re-observations. We see that the number of re-observation is
about half the number of total steps. This means that with the proposed
method the robot does not need to stop-and-observe at every step but
only half as often.

4.2. Experiment 2

We trained the robot on the same field in which the Robocop 99 games
were held. In this experiment, we placed the robot and the ball at
many more locations than we did in Experiment 1. To reduce the
load of teaching, we prepared six actions: forward; left forward; right
forward; left rotation; right rotation; and track the ball. Each action
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Figure 12. Probability distributions in Experiment 1-3.

Table VI. The number of re-observations (Experiment 1).

begin # of # of total # of re-obser- rate of re-

from trials steps vations observation

center 12 35 18 .51

left 12 31 15 .48

right 16 64 38 .59

also consisted of four walking cycles, of 4.8-seconds. We also assumed
that, in the teaching phase, the ball would not move unless the robot
touched it. Although the ball will be moved by teammates or opponents,
we assumed that the robot knows the ball direction without prediction
since the robot is watching the ball.

We obtained 1364 data points by teaching. Deleting inappropriate
data, we used 856 data points for the action decision tree and 1364
data points for the ball and landmark predictions. We show the sizes
and the order of the trees based on the information criterion in Tables
VII through X. We see that the difference in the depth among the
prediction trees is reduced, the top two landmarks in the action decision
tree remain as in Experiment 1, and most landmarks on top of the
prediction trees are the predicted landmarks themselves.

We used these trees for the games in RoboCup 99. We prepared
default actions for the cases when the robot cannot determine its action
even it searched all directions for the landmarks. The robot showed
actions that were expected from the teaching, though the robot looked
for the landmarks more frequently as in Experiment 1-2 than expected
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Table VII. Depth and size of the action decision tree
(Experiment 2).

# of leaves min dep. mean dep. max dep.

586 2 5.89 9

Table VIII. Depth and size of the prediction trees
(Experiment 2).

# of min dep. mean dep. max dep.

leaves

ball 403 2 2 2

OG 958 2 7.58 9

TG 1050 2 7.67 9

SE 845 2 7.35 9

SW 901 2 7.41 9

CE 901 2 7.13 9

CW 873 2 7.37 9

NE 1031 2 7.60 9

NW 980 2 7.55 9

from Experiment 1-1. The reason for this could be that the prediction
trees did not work well. We discuss this in the next section.

5. Discussion

From the results of Experiment 1 (Figures 10-12), we see that the action
probability distributions have either a sharp peak (nearly equal to 1.0)
or a very uniform profile. When the action probability distribution is
uniform, one or more of the landmark probability distributions are also
uniform. Although the robot looked all around for the landmarks and
the ball because of the uniform distribution of observation probabilities,
the length of observation time might be reduced with the strategy to

Table IX. The order of information for the action decision
tree (Experiment 2).

1 2 3 4 5 6 7 8 9

ball TG OG SW SE NW NE CE CW
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Table X. The order of information for prediction trees (Experiment 2).

tree for 1 2 3 4 5 6 7 8 9

ball ball act

OG OG SE SW TG NW CW NE CE act

TG TG OG SE SW NW NE CW CE act

SE SE OG TG SW CE NE NW CW act

SW SW OG CW SE TG NW NE CE act

CE CE SE OG TG NE SW NW act CW

CW CW SW OG TG NW SE NE CE act

NE TG NE OG SE CE NW SW CW act

NW NW TG OG SW CW SE NE CE act

observe the direction of a peak in the distribution if the distribution
has one.

We have prepared simulated observations for the robot’s and ball’s
positions at every 150[mm] in the field (area of 1500[mm]×2400[mm]
in the center of the field as shown in Figure 13) and the robot’s pose of
every 15 degrees. Each observation is simulated as if the robot has
observed all the directions. Excluding the data in which the robot
and the ball share the same position, we obtained 834768 simulated
observations. The robot could make decisions for 323054 observations
(39%) with the action decision tree constructed in Experiment 2 with
856 teaching data points. The robot could not determine its actions
for the other observations since the observations did not lead to any
of the leaves in the tree. Then all of the probabilities go to zero and
the same values are added for the compensation, which leads to the
uniform distribution of the probabilities.

Figure 14 shows the proportion of the data points according to the
number of the landmarks needed for the action decisions in 323054
observations. In the figure, the ball is also counted as a landmark. In
the observations, the robot did not need 8 or 9 landmarks (including
the ball) since the simulation did not include such observations. From
the figure, we can see that more than half of the action decisions can
be made with the directions of the ball and one or two landmarks. It
suggests that the mobile robot does not need to track its exact position.
This strongly supports our idea that the observation should be done
for the action decision and an action decision does not always have to
rely on the self-localization.

Figure 15 shows the accuracy of the predictions by the trees in
834768 observations. From this we can see that there was some bias
in the teaching data. For example, we focused on shooting the ball

main.tex; 21/09/2005; 12:39; p.20



HOW A MOBILE ROBOT SELECTS LANDMARKS 21

Figure 13. Simulated observations are prepared at each intersection shown in the
figure for 12 postures.
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Figure 14. The proportion of the set of the position of the robot and the ball and
the posture of the robot according to the number of the landmarks needed for the
action decisions in 323054 observations. Note, the ball is also counted as a landmark.

to the target goal and not on defending. This is clearly seen in the
differences between the prediction performances of TG and OG.

Comparing the order of action and landmarks in prediction trees
between Experiments 1 and 2, we notice that the action has a higher
priority in Experiment 1 than in Experiment 2. From Table V, we can
see that the predictions of the landmark directions generally depend
on the previous direction of the other landmarks in Experiment 1.
On the other hand, Table X shows that the predictions depend on
the previous direction of that landmark itself. This suggests that the
number of the training data was too small to extract the fact that
prediction of landmarks highly depends on their locations, as shown in
Experiment 1. Note that although the order is different in both cases,
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Figure 15. The success rate of the prediction by the trees in 834768 observations.

they are extracted from the training data by the information crite-
rion. Therefore, they both are optimal in that sense and the landmark
prediction can be made for the observations in the training data.

Since our method presumes the discrete observations, it does not
consider the continuity of the observations. Therefore the constructed
trees do not have enough generalization abilities even with the teaching
data in Experiment 2. For the observations which are consecutively
taken, the prediction performance can be better with some other meth-
ods like an Extended Kalman Filter method (Wan and Merwe, 2000)
although we have not dealt with such cases in this paper.

We can expect generalization by the compression of the trees. How-
ever, with generalization, there may be an increase in the number of
cases when the robot does not confirm the landmark directions even
when it should confirm them. The order in the tree, which is fixed in
the method for memory consumption and simplicity, might be changed
to ID3 or C4.5 for further abstraction and observation efficiency. In this
paper, we quantized the sensor space by hand. However, quantization
may be self-organized during tree construction by using a method like
C4.5 (Quinlan, 1993) which automatically divides data with continu-
ous attributes according to the information gain by the division for
construction of a decision tree.

6. Conclusions

We have proposed an observation strategy for a mobile robot to decide
what to do based on information criterion. An action decision tree is
constructed from the training data based on the information gain, and
the observation strategy is involved in the tree representation. We have
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confirmed our method through experiments with a real robot. We have
experimented with a robot equipped with a vision sensor to observe
landmarks; however, the method can be successfully applied to robots
with other types of sensors.

The method answered the question of whether to look or to move,
and it can be one solution to decide what to look for. However, other
questions remain: how to define the length of one action, and when
to confirm the locations of landmarks. We have designed the system
so that the robot watches the ball while walking, but the target to
watch should be determined by the information gain. In our method
the robot first observes and then determines its action. Since 1) the
walking we used was not stable enough for the robot to use the land-
mark observation for the decision; and 2) the robot could not observe
all directions simultaneously because of the limited viewing angle cam-
era, then the robot was not able to collect observations while walking.
Action decision using observation while walking is a future issue. Auto-
matic determination of the action probability threshold and an efficient
method to prepare the training data set are also our future work.
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