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Abstract. A simple and straightforward application of reinforcement learning
methods to real robot tasks is considerably difficult due to a huge exploration space
that easily scales up exponentially since recent robots tend to have many kinds of
sensors. One of the potential solutions might be application of so-called “mixture
of experts” proposed by Jacobs et al.[1]; it decomposes a whole state space to a
number of areas so that each expert module can produce good performance in the
assigned small area. This idea is very general and has a wide range of applications,
however, we have to consider how to decompose the space to a number of small
regions, assign each of them to a learning module or an expert, and define a goal
for each of them. In order to cope with the issue, this paper presents a method of
self task decomposition for modular learning system based on self-interpretation
of instructions given by a coach. Unlike the conventional approaches, the system
decomposes a long-term task into short-term subtasks so that one learning module
with limited computational resources can acquire a purposive behavior for one of
these subtasks. Since instructions are given from a viewpoint of coach who has no
idea how the system learns, they are interpreted by the learner to find the candi-
dates for subgoals. Finally, the top layer of the hierarchical reinforcement learning
system coordinates the lower learning modules to accomplish the whole task. The
method is applied to a simple soccer situation in the context of RoboCup.

Keywords. Reinforcement Learning, Behavior Acquisition, Task decomposition,
RoboCup

1. Introduction

One of the most formidable issues of reinforcement learning application to real robot
tasks is how to find a compact state space in order to acquire a purposive behavior within
reasonable learning time, and this has been much more serious since recent robots tend to
have many kinds of sensors like normal and omni-vision systems, touch sensors, infrared
range sensors, and so on. They can receive a variety of information from these sensors,
especially vision sensors. This fact indicates that the difficulty of applying reinforcement
learning to real robot tasks becomes more serious.
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One of the potential solutions might be application of so-called “mixture of experts”
proposed by Jacobs et al.[1], in which a whole state space is decomposed to a number
of areas so that each expert module can produce good performance in the assigned area,
and one gating system weights the output of the each expert module for the final system
output. This idea is very general and has a wide range of applications. For example, Doya
et al.[2] have proposed MOdular Selection And Identification for Control (MOSAIC),
which is a modular reinforcement learning architecture for non-linear, non-stationary
control tasks. However, all learning modules share the one state space that consists of a
few variables.

In order to make a search space as compact as possible, it is not enough to divide
the space to a number of areas and locate an expert to each of them and it is necessary
to reduce a number of state variables that construct whole search space. Fortunately, a
long time-scale behavior might often be decomposed into a sequence of simple behaviors
each of which needs a few state variables in general, and therefore, the search space
can be divided into smaller ones. In the existing studies, however, task decomposition
and behavior switching procedures are given by the designers (e.g.,[3,4,5]). Others adopt
the heuristics or the assumption that are not realistic from the viewpoint of real robot
application (ex. [6,7,8,9]).

A basic idea to cope with the above issue is that any learning module has limited
resource constraint, and this constraint of the learning capability leads us to introduce a
multi-module learning system and specified sub-tasks by itself rather than sub-tasks are
defined in advance by others. That is, one learning module has a compact state-action
space and acquires a simple map from the states to the actions, and then a sub-task
is defined by this module. We have already proposed the basic idea and showed some
results with simulation and simple real robot experiments [10,11], however, the proposed
algorithm needs a large amount of data in experiences that is hard to acquire with a real
robot.

In this paper, we introduce an idea that the capability of a learning module defines
the size of sub-tasks. We assume that each module can maintain a few numbers of state
variables and this assumption is reasonable for real robot applications. Then, the system
decomposes a long-term task into short-term sub-tasks with self-interpretation of coach
instructions so that one learning module with limited computational resources can ac-
quire a purposive behavior for one of these sub-tasks. In previous work [10,11], the sys-
tem had to try all possible actions at all possible states because it used action valueQ
on each state to estimate availabilities of modules, then, it is almost impossible to apply
to real robot tasks. We develop another approach to use state valueV instead of the ac-
tion value. We show experimental results with much more sensors such as normal and
omni-vision systems and 8 directions infrared range sensors.

2. Basic Idea

There are a learner and a coach in a simple soccer situation (Figure 1). The coach hasa
priori knowledge of a task to be played by the learner while s/he does not have any idea
about the system of the learner. On the other hand, the learner just follows the instructions
without any knowledge of the task. After some instructions given by a coach, the learner
decomposes the whole task into a sequence of subtasks, acquires a behavior for each
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Figure 1. A coach gives instructions to a
learner

Figure 2. The learner follows the instruc-
tions and finds basic behaviors by itself

subtask, and coordinates these behaviors to accomplish the task by itself. In Figure 1,
the coach instructs a shooting a ball into a yellow goal with obstacle avoidance. Figure 2
shows an example that the system decomposes this task into three subtasks and assigns
them to three modules that maintain state spaces consist of ball variables, opponent and
goal ones, and goal ones, respectively.

3. Robot, Tasks, and assumption

Figure 3. A real robot
Figure 4. Captured camera images

Figure 3 shows a mobile robot we have designed and built. The robot has a normal
camera in front of body, an omni-directional camera on the top, and infrared distance
sensors around the body. Figure 4 show the images of both cameras. A simple color im-
age processing is applied to detect the ball, the goal, and an opponent in the image in
real-time (every 33ms). The robot has also 8 directions infrared range sensors. The robot
has totally 39 candidates of state variables. The details of the candidates are eliminated
because of space limitations. The mobile platform is an omni-directional vehicle (any
translation and rotation on the plane). The tasks for this robot are chasing a ball, navi-
gating on the field, shooting a ball into the goal, and so on. We assume that the given
task has some absorbing goals, that is, the tasks are accomplished if the robot reaches to
certain areas in state spaces that consist of a few state variables. We demonstrated only
shooting behaviors for the task decomposition and the coordination. Figure 5 shows four
examples of the behaviors instructed by the coach. The total number of instruction is 4
for this experiment.

4. Task Decomposition Procedure

Figure 6 show a rough sketch of the idea of the task decomposition procedure. The
top of the Figure 6 shows a monolithic state space that consists of all state variables
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Figure 5. Examples of Instructed behaviors

(x1, x2, · · · , xn). The red lines indicate sequences of state value during the given instruc-
tions. As we assume beforehand, the system cannot have such a huge state space, then,
decomposes the state space into subspaces that consist of a few state variables. The sys-
tem regards that the ends of the instructions represent goal states of the given task. It
checks all subspaces and selects one in which the most ends of the instruction reach a
certain area (Gtask in Figure 6). The system regards this area as the subgoal state of
a subtask that is a part of the given long-term task. The steps of the procedure are as
follows:

1. find module unavailable areas in the instructions and regard them as unknown
subtask.

2. assign a new learning module.

(a) list up subgoal candidates for the unknown subtasks on the state space based
on all state variables.

(b) decompose the state space into subspaces that consist of a few state variables.
(c) check all subspaces and select one in which the subgoal candidates reach a

certain area best (Gsub in Figure 6).
(d) generate another learning module with the selected subspace as a state space

and the certain area as the goal state.

3. check the areas where the assigned modules are available.
4. exit if the generated modules cover all segments of instructed behaviors. Else

goto 1.

5. Availability Evaluation and New Learning Module Assignment

The learner needs to check the availability of learned behaviors that help to accomplish
the task by itself because the coach neither knows what kind of behaviors the learner
has already acquired nor shows perfect example behaviors from the learner’s viewpoint.
The learner should suppose a module as valid if it accomplishes the subtask even if the
greedy policy seems different from the example behavior. In order to judge the module
is valid for executing the instructed behavior, a sequence of state value will be available.
Figure 7 shows a sketch of state value function in which the state value is the biggest at
the goal state and it distributes like a mountain. When an agent follows an optimal policy,
it goes up the state value function. Then, if it goes up the state value mountain, it means
the module seems valid for explaining the executing behavior.
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Figure 6. Rough sketch of the idea of task decomposition procedure

Now, we introduceAE in order to evaluate how suitable the module’s policy is to
the subtask:

AE(s) = γ
V (s′)
V (s)

, (1)

whereγ, s, s′, andV (s) indicate discount factor, current state, next state, and state value
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Figure 7. Sketch of state value function and op-
timal policy

Figure 8. Sketch of propagation of state value

of states, respectively.AE becomes larger if the instructed action leads to the goal state
of the module while it becomes smaller if it leaves from the goal state. Figure 8 show
a rough image of state value propagation in a simple case: States are chained straight
one by one and an agent can move to only the next state in deterministic way. When the
agent moves from, for example, states3 to states4 successfully, the state valueV (s3) is
propagated asγV (s4), andAE(s3) will be AE(s3) = γV (s4)/V (s3) = 1. On the other
hand, if the agent moves tos2, theAE(s3) will be smaller. In order to decide whether
the module is valid or not, we prepare a thresholdAEth, and the learner evaluates the
module as valid for a period ifAE > AEth. If there are modules whoseAE exceeds
the thresholdAEth, the learner selects the module which keepsAE > AEth for longest
period among the modules (see Figure 9). In Figure 6, "Module Available Area" indicates
the one in whichAE > AEth.

AE

AEth

t

an existing learning module is available

new learning modules are needed

ignore

Figure 9. Availability identification during the given sample behavior

If there is no module which hasAE > AEth for a period, the learner creates a new
module which will be assigned to the subtask (see procedure 2 in??). To assign a new
module to such a subtask, the learner identifies the state space and the goal state. The
system follow the two steps to select an appropriate state space and the goal state for the
subtask:

• selection of one state variable that specifies the goal state, and
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• construction of a state space including the selected state variable.

In order to find one state variable that specifies the goal state best, the system lines up
the candidates for a goal region in term of state variables. On the other hand, in order
to select another state variable, the system evaluates performance of Q value estimation.
The details of the procedure are eliminated because of space limitations.

6. Experiments
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According to the learning procedure, the system produced four modules for the in-
structed behaviors. The modules areLM1(Apb, Xpb), LM2(θog), LM3(Yob, Xob), and
LM4(Aob, θob). For exampleLM1(Apb, Xpb) indicates that the modules has a state
space that consists of the area of ball on the normal camera image (Aob) and the x po-
sition of the ball on the normal camera image (Xpb). Figure 10 shows sequences of the
selected module, availability evaluations and goal state activations of modules through
an instruction.

7. Conclusion

We proposed a hierarchical multi-module learning system based on self-interpretation of
instructions given by a coach. We applied the proposed method to our robot and showed
results for a simple soccer situation in the context of RoboCup.
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