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Interaction rule learning with a human partner based on an imitation faculty
with a simple visuo-motor mapping
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Abstract

Imitation has been receiving increasing attention from the viewpoint of not simply generating new motions but also the emergence of
communication. This paper proposes a system for a humanoid who obtains new motions through learning the interaction rules with a human
partner based on the assumption of the mirror system. First, a humanoid learns the correspondence between its own posture and the partner’s
one on the ISOMAPs supposing that a human partner imitates the robot motions. Based on this correspondence, the robot can easily transfer the
observed partner’s gestures to its own motion. Then, this correspondence enables a robot to acquire the new motion primitive for the interaction.
Furthermore, through this process, the humanoid learns an interaction rule that control gesture turn-taking. The preliminary results and future
issues are given.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Studies on human–robot interaction are roughly classified
into two categories. The first one is related to physical task
accomplishment by cooperation (e.g. [3] for table carrying) or
tele-operation (e.g. [2] for spaceship inspection/repairing), and
sensor feedback and/or latency are main issues. The second one
is related to communication with verbal or nonverbal aids, and
language communication is typical for the former, and gesture
for the latter. Since language acquisition is one of the most
formidable issues in general, robotic approaches have been
showing very limited capabilities. Gesture recognition systems
usually prepare a fixed set of gesture patterns for matching the
observed movements with them [5].

Imitation has been receiving increasing attention from the
viewpoint of not simply generating new motions [1] but also
the emergence of communication owing to recent findings in
physiology such as the mirror neuron [6]. Inspired by these
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findings, there has been study of how the mirror system is
developed without explicit knowledge given by a designer [4].

Working towards the emergence of communication under
such a mirror system, we focus on how a humanoid robot
obtains new motions through learning interaction rules that
control gesture turn-taking with a human partner who knows the
rules and reacts (shows his/her gesture) to the robot motion. In
this paper, we propose a system that has two learning phases: in
the first phase, a robot makes the mapping between the human
posture and the robot one supposing that the human partner
imitates the robot posture, and in the second phase, the robot
learns the interaction rule by using the prediction error between
the predicted motion and the observed human gesture based
on this mapping result. The preliminary results are shown and
future issues are discussed.

2. A system overview

The proposed system consists of three modules as shown in
Fig. 1. The first one learns the posture matching between the
human (other) image and the joint angles of a humanoid (self).
This module enables the robot to correspond to the observed
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Fig. 1. An overview of the proposed system.
human gestures with self-motions. The second one learns the
motion primitives from the observation of the human gesture.
This module compares the observed gesture with the self-
motion primitive and acquires it as a new motion primitive if
it is novel for the robot. The third one learns an interaction rule
that controls gesture turn-taking between a human partner and
the robot expected to show a motion primitive to be taken when
a certain human gesture is observed. The humanoid updates the
interaction rule by comparing the human gesture with one that
is predicted using the current interaction rule the robot has.

3. Human posture image and robot’s posture map

The human posture information is acquired by the image
processing and pattern matching of the posture of arms. First,
the silhouette image (120×160 pixel) of the human is obtained
by subtracting the background image from a camera image
of the human partner taken from the robot. Then, the initial
posture (both arms are down) image is subtracted from the
silhouette image. Finally the image that includes only both
arms is obtained. This image is reduced into a 40 × 30
pixel one, divided into two images to acquire right and left
arm posture information separately, and input to the ISOMAP
processing [7] for data compression.

The robot posture information consists of eight joint angles
(four in each arm). Using ISOMAP, we map the data for each
arm to a two-dimensional space.

The coordinates on the ISOMAP of the human posture
image are associated with ones on the ISOMAP of robot joint
angles by the neural network, which is trained by the pairs of
corresponding data when the human imitates the robot motions
(Fig. 2).

After learning, a new input image of the human’s posture is
projected on the robot posture map by the neural network, and
the robot can recognize the human posture based on its own
joint angles.

4. Acquiring interaction rules through interaction

Fig. 3 shows examples of human gestures (human motion
primitives) and interaction rules used in the experiment. For
example, the human partner shows the gesture A, and the robot
is expected to show gesture B, but at the beginning, it does not
have any motion primitives, therefore the robot acquires gesture
A as a new motion primitive and imitates gesture A, then the
human partner shows the gesture B reacting to the robot gesture
A, and this process continues. The task of the robot is to acquire
the same motion primitives and the same interaction rule as the
human in order to play gesture turn-taking. In the following, the
details of the system are explained.

(a) Motion primitive
A motion primitive is defined as a set of the initial and final

points on the self-posture ISOMAP,

Ri = {si
l , si

r , ei
l , ei

r }, (i = 1, 2, . . . , N ) (1)

where sl , sr are the coordinates of the starting points on the
robot posture ISOMAP for the left and right arm, and el , er
are those of the end points, and N is the number of motion
primitives (Fig. 4).

(b) Motion recognition and selection
The motion of the human is recognized as the self-motion

primitive, Rs , that is the nearest among the self-motion
primitives,

Rs(t) = arg min
i∈N

(‖Rx − Ri‖), (2)

where Rx is the observed human gesture projected on the
posture map, and Ri is the motion primitive that the robot has.
The motion the robot makes when observing a human motion,
Ra(t), is determined by the motion selection probability,

Ra(t) = arg max
i∈N

P(Ri |Rs(t)). (3)

(c) Updating the interaction rule
The motion selection probability is updated by both the

prediction of motion of the human and the reaction of the
human to the self-motion every pair of turns as shown in Fig. 5.
The robot predicts the human’s reaction, R̂s(t + 1), to its self-
motion, Ra(t), based on its probability of motion selection,

R̂s(t + 1) = arg max
i∈N

P(Ri |Ra(t)). (4)

Comparing the predictive reaction of the human, R̂s(t +1), with
the observed reaction, Rs(t + 1), the probability of the motion
selection is updated as follows,

1P(R̂s(t + 1)|Ra(t)) =

{
−r if R̂s 6= Rs
0 otherwise.

(5)

On the other hand, the robot can update the interaction rule
based on the reaction of the human because the robot presumes



416 M. Ogino et al. / Robotics and Autonomous Systems 54 (2006) 414–418
Fig. 2. Human and robot posture ISOMAP.

Fig. 3. Motion primitives and interaction rules of the human.

Fig. 4. Motion primitive.
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Fig. 5. Learning an interaction rule via prediction error.
Fig. 6. The time course of the probabilities of motion selection of the robot.

that the human determines the next motion based on an
interaction rule (the probability of motion selection) that is the
same as its own rule,

1P(Rs(t + 1)|Ra(t)) = r ′. (6)

When the observed motion cannot be recognized as any of
the self-motions because the shortest distance between the
observed and self-primitive exceeds a certain threshold and
the presumable nearest motion primitive resulted in wrong
prediction, the observed motion primitive is registered as a new
self-motion primitive. At this time, the robot returns the new
motion primitive in the next step instead of using the motion
selection probability.
(d) Experimental result

Fig. 6 shows the time course of the probability of motion
selection of the robot when the robot observes the motion
C. The graph shows that the appropriate motion selection
probability goes up highest in each phase corresponding
to the human interaction rule. The probabilities of motion
selection when observing other gestures also correspond to the
interaction rules of humans (not shown).

5. Discussion

There are several issues left unsolved. First is how to
represent postures and motions appropriately. ISOMAPs used
in this paper have an advantage in complementary mapping
because similar data are mapped to similar positions on the
map. However, it is not apparent how many samples should be
stored. Moreover, there is no assurance that the topology of the
mapped data is appropriate for binding by a neural network.

The second problem is how to segment an appropriate mo-
tion primitive from the observed motions. In our experiments,
the motion primitive is defined in advance as the set of start and
end postures of the motion. In a human, however, it seems that
an appropriate motion primitive type is dynamically selected
among many types depending on the communication context.

The third problem is turn-taking. In this paper, the phase
during which the human shows his/her motion to the robot and
the phase during which the robot shows a motion to the human
are switched by the human (experimenter). Apparently, in a
human, people autonomously take turns.

In future, we will attack these problems to realize more
natural communication.
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