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Abstract— Observation study of human infants tells us that
they can successfully acquire lexicon; understanding the relation-
ship between the meaning and the uttered word from only one
teaching by caregiver, even though there are many other possible
mappings. This paper proposes a lexical acquisition model which
makes use of curiosity to associate visual features of observed
objects with the labels that are uttered by a caregiver. A robot
changes its attention and learning rate based on curiosity. In
the experiment with a real humanoid robot, the visual features
are represented with self organizing maps which adaptively
represents the shape of observed objects independent of the
viewpoints.

I. INTRODUCTION

Human infants learn new words at an incredible rate from
around 18 months, and they acquire a vocabulary of 1,000
to 2,000 words by the time they are two [1]. This is called
”language explosion” or ”lexical explosion”, and one of the
biggest mysteries of human cognitive developmental process.
A constructive approach to this mystery by building a robot
that can reproduce this function seems promising to reveal the
underlying mechanism of this process [2].

The existing bottom-up approach in machine learning to
lexicon acquisition has focused on symbol grounding problem
in which the problem treated is how to connect sound in-
formation from caregiver and sensor information that a robot
captures from the environment [3] [4] [5] [6]. A typical method
proposed in these studies is based on the estimation of the
co-occurrence probabilities between the words uttered by a
caregiver and the visual features that a robot observes. In these
experiments, training data sets are given by the caregiver, and
the robot passively learns them.

However, such a statistical method does not seem sufficient
to explain the lexical explosion. It is observed that human in-
fants can acquire the lexical relationship between the meaning
and the uttered word only from one teaching, even though
there are many other possibilities. Cognitive psychologists
have proposed that infants utilize some rules or constraints
to acquire lexicon efficiently. Markman [7] proposed the
whole object constraint and the mutual exclusivity constraint.
Landau et al. [8] proposed the geometrical constraint. The
word order can be used for constraining the meaning of the

words, and some methods are proposed that use grammatical
information to acquire the lexical relationship and to categorize
the acquired words [9] [10].

Moreover, infants are not passive creatures. They actively
and intentionally interact with the environment around them
[11]. The period when an infant starts to learn is overlapped
with that when he/she starts to walk. The existing methods
proposed in machine learning have neglected this active at-
titude of infants, and training data are passively received by
the infants. It is well known that infants have selectivity for
novel things and events. It is shown from many observations
that they look longer at novel things than at known ones. This
selectivity is thought to take an effective role in acquiring
information for new events and so in language acquisition.

The active selection of motions including visual attention
might take an important role in lexicon acquisition. It is
important to make a curiosity model with which an agent
decides how to react to the environment depending on its
current knowledge so that it can acquire necessary information.
Saliency is one of the fundamental factors for making this
conscious and subconscious motivational process. Saliency is
supposed to be evaluated by comparing with something in
novelty and frequency. Walther et al. [12] proposed a visual
attention model in which saliency level is calculated based on
the spatial comparison with surrounding features.

In this paper, we focuses on the temporal aspect of saliency,
which is evaluated based on temporal comparison in short-
term and long-term memory of an agent, and propose a
lexical acquisition model in which saliency evaluated based
on a robot’s experience affects to the visual attention and
learning rate of a robot. A robot evaluates saliency for each
visual feature of observed objects depending on habituation
and learning experience. The curiosity based on the evaluated
saliency affects to the selection of objects to be attended and
changes the learning rate for lexical acquisition.

The rest of the paper is organized as follows: the next sec-
tion introduces the proposed lexical acquisition model based
on curiosity, and the previous simulation experiment to show
the efficiency of the proposed learning model is summarized.
Then, the experiment with a real humanoid is presented with



the adaptively representation model of visual features. Finally,
discussion and conclusion are given.

II. LEXICON ACQUISITION LEARNING BASED ON
CURIOSITY

The proposed system learns lexicons on shapes and colors
of an observed object through communication with a caregiver.
When a robot attends to an object, it acquires the visual
features on shapes and colors through visual sensors. At the
same time, a caregiver teaches a label: a word that corresponds
to the visual feature of the observed object. Here, it is supposed
that labels given to the robot are independent to each other
(exclusive relation among them).
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Fig. 1. An overview of the proposed system for acquiring lexicon utilizing
curiosity

Fig. 1 shows the proposed system. The robot learns the
lexicon in the following way.

1) The robot selects one salient object among many in its
field of view.

2) The robot points the selected object and utters the labels
from its own knowledge corresponding to the visual
features of the selected object, so that the caregiver can
be informed what is known label or unknown one.

3) The robot associates the visual features of the object
with the label uttered by the caregiver.

In this learning process, curiosity that the robot feels has
effects on the selection of the object to be attended and on
the learning rate of the association between the label and the
visual features. In the following, curiosity based on saliency
is formulated, and the effects of curiosity on attention and
learning are given.

B. curiosity based on saliency

The curiosity that a robot feels on the visual features
consists of two kinds of salinecy: the habituation saliency, S1,
and the knowledge saliency, S2.

1) the habituation saliency, S1: The first saliency, S1, is
characterized by habituation. The robot feels low saliency for
the visual feature that is always observed. On the other hand,
it feels high for the feature that is observed for the first time
or that is not observed for a long time. To realize this feature,
the habituation saliency is updated as follows,

Si
1(t) = Si

1(t − 1) + ∆Si
1(t − 1) (1)

∆Si
1(t) =

α
(
1 − Si

1(t)
)
− β Si

1(t) Ii(t)
τ

(2)

where α is a constant that characterizes spontaneous recovery,
β is a constant that determines the rate of habituation, τ is the
time constant, and Ii is the activation level of the i-th neuron
in the visual feature map.

2) the knowledge-driven saliency, S2: The second saliency,
S2, is characterized by the acquired knowledge. The robot
feels more salient for the visual feature that is not associ-
ated with any other label than learned one. This saliency is
expected to accelerate the lexicon learning by suppressing
the association between a label and the visual feature that
has already been associated with another label. The acquired
lexical knowledge is represented as the connection strength,
w, between a visual feature and a label. Let the connection
strength from the l-th label to the i-th visual feature neuron
wl→i, The label that connects to the i-th visual feature neuron
with the maximum stlength, L, is

L = arg max
l

(wl→i). (3)

The connection, wL→i, can be used as the index of the
familiarity of the i-th visual feature neuron.

Si
2 = 1 − sigmoid(wL→i), (4)

sigmoid(w) =
1

1 + e−a(w−θ)
, (5)

where a is the parameter that determines the rate of rise of
sigmoid function, and θ is a threshold.

3) curiosity: The curiosity level that the robot feels for the
i-th visual feature can be calculated by the product of the two
saliency as follows,

Ci(t) =
(
Si

1(t) + c1

)
×

(
Si

2(t) + c2

)
, (6)

where c1 and c2 are constants.

C. Attention bias

The robot selects one object to be attended among the
observed ones based on the curiosity level. The curiosity level
for the n-th object is evaluated by the maximum value of the
product of the activated level I and the curiosity level C of
each observed visual feature,

Mn = max
i

( Ii
n × Ci ). (7)



The robot attends to the object that has the maximum M value,

N = arg max
n

Mn. (8)

However, it is supposed that when Mn does not exceed the
minimum threshold, the robot does not show any interest to
the observed objects and searches for another one.

D. Learning bias

A visual feature is associated with a label based on Hebbian
learning. When the caregiver teaches the robot the label l
the activated neuron corresponding to the visual feature that
the robot observes at that time is associated with this label
l. The learning is biased by the curiosity defined previously.
The more salient the visual feature is, the more strongly the
connection with the label is bound. Let the activation level of
the l-th label al, then the update equation is given by

∆wl→i = ε al

(
Ii − threshold

)
Ci, (9)

where ε denotes the learning rate. When the k-th label is taught
by the caregiver, al=k = 1 and al 6=k = 0. The learning rate ε
is biased by the second saliency S2 as follows,

ε = cSn
2 , (10)

n = arg max
i

(wl→i), (11)

where c is a constant. When the l-th label is already connected
to the n-th visual feature, the second saliency Sn

2 becomes
small, and it is expected that the connection with another visual
feature is suppressed.

When the l-th label uttered by the robot is wrong and
corrected by the caregiver, the corresponding connection is
weakened by the following update equation,

∆wl→i = −ε′ Ii, (12)

where ε′ is a constant learning rate.
When the visual feature I is observed, the robot utters the

l-th label, if the utterance value al which is defined as

al =
∑

i

Ii w′
l→i, (13)

exceeds a certain threshold.

E. Simulation Experiment

Before applying to a real robot, we examined the proposed
system in the simulation environment. The detail setting and
the results of the simulation are described in the previous paper
[13]. Here, only the points of the results are summarized.

In the simulation experiment, the task of a robot is to learn
the name (labels) for the corresponding visual features. The
assumed visual features that the robot can detect are 5 types:
color, shape, size, weight, and hardness. The variations of
objects are 40 for color, 80 for shape, and 8 for size, weight
and hardness. The robot has the 144 neurons, each of which
is activated when the corresponding visual feature is detected.
144 labels are taught to the robot by the caregiver. When the
object to be attended is determined, the robot utters all labels

that it has learned. Depending on the robot’s utterance, the
caregiver teaches labels in the following way.

• When the robot does not utters or utters without any error,
the caregiver teaches only one label that is not uttered by
the robot.

• When the robot’s utterance is wrong, the caregiver points
out that the utterance is wrong and teaches the right label.

• When the labels the robot utters are all right, the caregiver
does nothing.

Fig. 2 shows the resultant learning curves averaged in 10
trials. The horizontal and vertical axes indicate the learning
steps and the number of acquired vocabulary, respectively.
One learning step is defined as the process in which the
caregiver teaches the robot one label and the robot updates its
Hebbian learning network. The number of acquired vocabulary
is calculated as the sum of the connection weights that exceeds
0.9. One trial is defined as the process that the robot learns all
labels. This graph shows the proposed method (purple curve)
effectively learns the labels: 25 % less steps than that of simple
Hebbian learning (red curve) in the incremental environment.
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Fig. 2. Learning curves

The active selection of an object to be attended seems to
affect the learning speed in the late stage of the learning
process. On the other hand, the learning bias helps the robot
to acquire the more proper associations with less number of
teaching.

III. EXPERIMENT WITH A REAL HUMANOID

A. visual features

In this experiment, the visual features of color and shape
are extracted as visual inputs. The visual feature for color is
the averaged value of the color of an observed object. The
visual feature for shape is the output of Gabor filters [14].
Fig. 6 (a) shows an example of output of the Gabor filters,
in which the parameters of the Gabor filters are r = (4, 8),
and θ = (0, 60, 120, 180, 240, 300). 3 × 3 receptive fields are
arranged in the image as shown in Fig. 6 (b). The values of
the Gabor filters are summed in each receptive field with the
weight of the distance between the each pixel position and



the center of each receptive field. Thus the shape feature is
represented in 9 × 2 × 6 = 108 dimensions.

(a) Examples of Gabor filter (r=10,20
θ=0,90,180,270)

(b) Receptive
Field

Fig. 3. Primal features about shape

The visual features such as shape and color are represented
with self organizing map (SOM) [15]. In this SOM, the
representational vectors are self organized based on the input
visual data, and after learning the activated levels of neurons
are used as a feature vector I for the system.

The activation level of each neuron in SOM is calculated
depending on the distance between the input vector and the
representational vector of the neuron.

a = 1 − 1
1 + exp−γ( d−threshold )

, (14)

where d denotes the distance between the input vector and the
representational vector (Fig. 4). Let the activated level of the
i-th neuron be ai (0 ≤ ai ≤ 1), then the visual feature vector
I is described as

I =



a0
c
...

anc
c

a0
s
...

ans
s


(15)

where nc and ns are the numbers of neurons of the color and
shape SOM, respectively.
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B. representation of shapes independent of view points

Unlike in the simulation environment, the shape appearence
in the real environment changes depending on the robot’s

viewpoint. The simple mapping between neurons of the visual
feature SOM and labels cannot be used. We assume that the
the visual features observed continuously belong to the same
class of the shape. The proposed shape map consists of small
SOM segments, to each of which given labels are mapped.
The activation level of each SOM segment is the maximum
activation level of the neuron belonging to it. A new SOM
segment is added adaptively when the existing SOMs cannot
represent an observed shape. Moreover, when multiple SOMs
are activated during the interaction with one object, those
SOMs are merged. In this case, the connection weights of two
SOMs wl→i(t), wl→j(t), are merged to new one wl→i(t + 1)
as follows,

wl→i(t + 1) = wl→i(t) + wl→j(t), (16)
wl→j(t + 1) = 0. (17)

The reconstruction process of shape map is described as
follows,

1) When an object to be attended is decided, the robot starts
to interact with the object so that the data of the various
appearances of the object can be collected.

2) After the interaction with the object, the collected data
are used for incremental learning of the SOM that is
activated during the interaction.

3) If no existing SOMs are activated, a new SOM is added
to the shape map.

4) If multiple SOMs are activated, these SOMs are merged
because it is highly likely that they represent the differ-
ent appearances of the same shape.

Here, in the reconstruction such as incremental learning or
merging, the new SOM is constructed using the training data
which consist of the representational vectors of the old SOMs
and new input data.

C. acquiring lexicon by a humanoid robot

To evaluate the validity of the proposed method, the lexicon
acquisition experiment is done in the real environment using a
humanoid robot. Fig. 5 shows the environmental setting. The
humanoid robot, Hoap2 [16], enhanced with the USB cam-
era, has motions like moving its neck for searching objects,
walking for approaching to them, and kicking for interacting
with objects, and pointing the objects by the arms to mention
the caregiver which object the robot attends to. Instead of
uttering real sound, the robot communicates with the caregiver
via displayed word and keyboard inputs.

The process of the interaction with the objects and com-
munication with the caregiver is as follows. Firstly, the robot
selects the object to be attended based on its curiosity level,
and approaches to the attended object. The robot interacts with
the object by kicking. During approaching and kicking, the
appearance data are collected and used for the reconstruction
of the shape map. After one kicking, the robot points to
the object, and indicates the known labels about the pointed
object to the caregiver in the computer display. If the indicated
labels are incorrect, the caregiver correct them and teaches the



Fig. 5. Environmental setting

correct ones. If the indicated labels are correct or no labels
are indicated, the caregiver teaches the new one of the pointed
object. After labels are taught, the saliency level S1 is updated
according to the eqs. (1) and (2). If the saliency levels S1 on all
the features of the attended object go down less than a certain
threshold, the robot changes its attention to a new object.

Fig. 6 shows the saliency changes and the activity levels of
color and shape SOMs in the first several learning steps. The
upper table shows the observed images of the objects (the last
images in the interaction), the labels uttered by the robot, and
the labels taught by the caregiver. The graph in the middle
shows the time course of the curiosity and saliency for the
shape SOM1, as well as the connection weight w between
the label ”Box” and the corresponding shape SOM (Shape
SOM1). The tables in the bottom shows the activation level
of the color SOM and the shape SOMs (the activation level
at the end of the interaction is indicated). Followings are the
details of this process.

1) In the first step of the learning (from 0 to 25 [sec]), the
first shape SOM is composed based on the data that are
collected during the interaction. After the label ”Box” is
taught by the caregiver, the robot gives its attention to
the current object until the salient level S1 goes down
the threshold (=0.3), and changes its attention to a new
object. At this stage, the label ”Box” is connected both
to the neuron in color SOM corresponding to yellow and
to the shape SOM1.

2) In the second step, the robot attends to a new object.
The shape SOM1 is not activated and the new shape
SOM2 is added. At the same time, the salient level S1

for the shape SOM1 is recovered. At this stage, the label
”Ball” is connected to both to the neuron in color SOM
corresponding to blue and to the shape SOM2.

3) In the third step, the robot attends to the object that
has the same shape as the first step. However, the robot
cannot recognize as the same because the viewpoint is
different. The neuron in color SOM corresponding to
blue is activated and the label connected to the neuron
”Ball” is uttered. The caregiver corrects its mistake and
the connection between the blue neuron and the label
”Ball” is weakened. At this stage, the label ”Ball” is

connected to the correct shape SOM, and the label ”Box”
is connected to the neurons in color SOM corresponding
to yellow and blue, and the shape SOMs 1 and 3.

4) In the forth step, the robot attends to the object that is
the same as the first step. During the interaction with
the object, the shape SOMs 1 and 3 are activated and so
they are merged, so that the connection weight goes up
and the saliency level about knowledge S2 decreases.

5) In the fifth step, the robot attends to the object, that is, a
yellow ball. The label ”Box” is uttered because it is still
connected to the yellow neuron. The caregiver corrects
its mistake, then the label ”Box” is correctly connected
to the corresponding shape SOM1. This causes the
decrease of the saliency level about knowledge S2”.
Afterwards, the shape SOM1 is not easily connected to
other labels.

Fig. 7 shows the learning curve in the learning process.
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several steps

IV. DISCUSSION AND CONCLUSION

This paper proposed the lexicon acquisition model in which
the robot can effectively associate the observed visual feature
with the spoken labels based on curiosity. The curiosity level
calculated based on the saliency levels from habituation and
the acquired knowledge has effects on the visual attention
and the learning rate of the robot. The simulation result
shows that the learning model with curiosity acquires the
given labels much faster than the simple Hebbian learning
model. Moreover, the proposed learning model shows better
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Fig. 7. Experimental result using real robot

performance in the environment in which the number of
objects exposed to robots is gradually increased.

Even if an agent and a caregiver shares joint attention to
one object, the agent cannot associate the visual feature with
the word uttered by the caregiver without understanding which
feature the uttered word is intended to. The proposed learning
model solved this problem by associating the uttered label with
the unlearned feature more effectively based on the curiosity.
This is thought to be one formulation of the mutually exclusive
constraint proposed by Markman [7]. The mutually exclusive
constraint will be more effective if the robot preferentially
selects the object whose features are only partially known. This
preference is not included in this paper. The robot feels equal
curiosity to the objects which has any new feature. However,
the effectiveness of the preference to partially known objects
is shown in the simulation results in the environment in which
the number of objects exposed to robots is gradually increased.

The proposed method implicitly supposes the joint attention
mechanism between the robot and the caregiver. The coinci-
dence of the curiosity, and so the coincidence of the attention,
between the robot and the caregiver is thought to be very
important in language acquisition. In this paper, the curiosity
model is adopted only in the learner.

Exploring the learning model which the learner and the
caregiver share the same saliency model is our future work.

Sharing the same saliency will not be difficult when the learner
and the caregiver shares the same saliency model. This may
be possible by learning saliency model each other as if human
infants and caregivers do.
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