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Abstract— To realize adaptive and robust manipulation, a
robot should have several sensing modalities and coordinate their
outputs to achieve the given task based on underlying constraint
in the real environment. This paper discusses on acquisition of
multi-modal expression of slip consisting of vibration, pressure,
and vision sensations through pick-up experiences. A sensor
network is proposed to acquire the expression, whose learning
ability is demonstrated by a real experiment. The applicability
of the learned network is also demonstrated by experiments to
realize adaptive picking.

I. INTRODUCTION

We can utilize our fingers to touch, pick up, and manipulate
various kinds of objects making use of tactile, force, and
vision sensors. Although there have been an enormous number
of studies on robot hands trying to reproduce such adaptive
and dexterous behaviors [1], so far the performance is not
satisfactory. The reason is supposed to be not only lack
of sophisticated control strategy, but poor sensing abilities:
dynamics existing among the fingers and the object seems
to be too complicated to be observed by the existing sensor
system.

A slip is one of such dynamic phenomena that often
occurs during manipulation, therefore, should be observed by
the sensor system. Numerous attempts have been made to
produce sensors that can observe slips. Some studies utilized
piezoelectric films embedded in soft materials, which could
sense vibration [2], [3], [4], [5], [6]. They detected initial slips
by processing the output of the films. Vibration information
from piezoelectric receptors only helps to detect micro slips,
but not to detect the direction of the slip. Yamada and
Cutkosky proposed to use not only piezoelectric receptors but
a force sensor to sense the direction of the slip [7]. Several
researches utilized strain gauges embedded in soft materials
and differentiated the output with respect to space and/or time
to detect slips [8], [9]. Accelerometers [10] and air pressure
sensors [11] were also used to detect slips by making use
of the softness of the fingers. Since the initial micro slips
are local phenomena, some studies utilized distributed array
sensors and detected slips by finding local changes on them
[12], [13], [14], [15].

These sensor systems can observe micro slips and can be
utilized to avoid them: not to drop the object. However, the

designer should analyze micro slip phenomena and make a
model to translate the vibration information into slip informa-
tion by utilizing, for example, a FEM analysis. As a result,
positions of the receptors should be controlled precisely when
the sensor is produced, and the system is prone to the modeling
error. Moreover, once a macro slip occurs, the robot should
use a global sensor such as a vision sensor that should be also
calibrated with the tactile receptors to preserve the observation
consistency between them.

In this paper, we propose a sensor network consisting of not
only one modality but three modalities, piezoelectric films,
strain gauges, and a vision sensor, each of which provides
sensation of vibration, pressure, and vision, respectively. The
network is trained to acquire multi-modal expression of slips
autonomously through pick-up experiences. Before learning,
the robot does not know the relation between these sensations
and the slip can only be detected by the vision sensor. Through
pick-up experiences, it correlates the output of the vision
with those of other receptors, and finally can learn to detect
slips by vibration and pressure receptors without any physical
modeling.

The remainder of this paper is organized as follows. First,
we discuss about the multi-modal expression of the slip
observed by a few sensations. Then, we propose a sensor net-
work to acquire the relation between these sensations through
experiences. The learning ability of the proposed network is
demonstrated by a real experiment. Finally, we demonstrate
that the learned network can be utilized to realize adaptive
grasping by sensing micro slips.

II. MULTI-MODAL EXPRESSION OF THE SLIP

A. Macro and micro slips

If the finger is rigid, a slip is observed as a relative
movement between the finger and the object, and therefore,
can be easily observed by sensors such as a vision sensor or
strain gauges pasted on a surface of a finger [16]. However,
once we introduce softness to the finger to increase robust-
ness of the grasping and manipulation, it contacts with the
object in certain area and phenomenon between them becomes
complicated: at the beginning of the slip, there are few micro
slips between the finger and the object, but there is no relative
movement between them in a macro scale. As the exerted force
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Fig. 1. A robot system consists of fingers equipped with tactile receptors
and a vision sensor.

grows, the number of micro slips increases gradually, and then,
suddenly the finger begins to move relatively with the object
since the number of micro slips catastrophically increases. The
micro slips should be observed to predict the macro slip, and
the macro slip should also be observed to control amount of
the slip, therefore, it is crucial to observe these slips to achieve
adaptive manipulation.

Although these slips are continuous phenomena, physical
properties of sensors to observe them are different: the micro
slips can be observed as vibrations by piezoelectric films or
as spatial differentiation of a strain gauge array whereas the
macro slips can be observed by a vision sensor. To utilize
these receptors for smooth manipulation, therefore, the robot
should know the relation between them. In the existing work,
they did not deal these slips as a continuous process, and the
sensors are calibrated by the robot designer. As a result, the
sensor system is prone to the modeling error. If the robot can
acquire the relation between them through experiences, it can
utilize their continuity and obtain robust sensor system for
both macro and micro slips.

B. Sensations of vibration and pressure

If the finger has only the sense of vibration, it can detect the
occurrence of the slip, but cannot observe its direction. On the
other hand, the sense of pressure only gives the direction and
strength of applied local force and cannot detect the occurrence
of the slip. We could enhance the sensing ability of one of
these sensations by making use of an array structure, but it will
improve the sensing ability to utilize two modalities together.
In our implementation, the piezoelectric films and the strain
gauges are used to provide the sense of vibration and pressure,
respectively.

By introducing three modalities, vision, vibration, and pres-
sure, the sensing is expected to improve the sensing ability and
to be adaptive, but on the other hand, it is difficult to integrate
these sensations for realizing a given task. In the previous
work, the relation between expressions in different modalities
is ignored or calibrated by a human designer. Therefore, the
resultant system becomes brittle against the modeling error.

tactile nodes
v
i
b

r
a

t
i
o

n

 
r
e

c
e

p

t
o

r
s

p

r
e

s
s
u

r
e

 
r
e

c
e

p

t
o

r
s

1t

2t

nt

visual nodes

11w

1v 2v
coded vision information

1o

2o

w21

1nw
w2n

Fig. 2. A sensor network that learns multi-modal expression of the slip.
The weights between the tactile nodes and the vision nodes are updated by a
Hebbian rule.

In this paper, we propose a sensor network that can learn the
relation between the modalities through experiences. In the
early stage of learning, the robot detects the slip as relative
motion in the vision sensor, that is, a macro slip. The other
modalities, sensations of vibration and pressure, will be trained
through experiences. After learning, the robot can sense the
micro slip and its direction as well even if the designer does
not calibrate the receptors.

C. A sensor network that can learn multi-modal expression of
the slip

In Fig. 1, we show a system sketch that consists of a robot
hand equipped with tactile receptors and a vision sensor. In
Fig. 2, we show a sensor network to acquire the multi-modal
expression of the slip. The outputs of vibration and pressure
receptors are normalized by their maximum values and are
given as activations of tactile nodes. The visual information
is coded as activations and denoting the relative movement
between the hand and the object and the movement of the
hand, respectively:

v1 =


1 (there is no relative motion between the hand

and the object in vision)
0 (both the hand and the object do not move)
−1 (there is relative motion between them)

(1)

v2 =

 1 (the hand is moving upward in vision)
0 (it does not move)
−1 (it is moving downward)

(2)

The tactile nodes tj are connected to the output nodes oi by
weights wij :

oi = f
(∑

j

tjwij + vi

)
(3)



Fig. 3. A robot system used for experiments. The robot has an arm, two
fingers equipped with anthropomorphic fingertips, and a vision sensor.

where f(x) is a saturation function:

f(x) =

 1, x > 1
x, |x| < 1
−1, x < −1

(4)

The weight wij are updated basically based on the Hebbian
learning rule according to the activations of tactile nodes and
vision [17]. The Hebbian learning is a fast learning algorithm
and is able to learn in online. Additionally, the structure of
the network is understood viscerally. Thus, we expect that the
network and the Hebbian learning are suitable for acquiring
the relation between the sensors. In this paper, however, the
algorithm is slightly modified:

∆wij = α r tjvi − βwij (5)

where α and β are a learning rate and a forgetting rate,
respectively. r is a variable learning rate:

r = (|wij | + δ)/(
∑

j

|wij | + δ) (6)

where δ is an arbitrary positive small value. r accelerates the
learning of a connection that has large weight, and decelerates
the learning of other connections. This term helps to eliminate
the effect of steady offsets of receptors.

III. EXPERIMENTS: PICKING UP AN OBJECT

A. A robot system used for experiments

A robot system used for experiments is shown in Fig.
3. It has a 7-DOF manipulator, PA-10 (Mitsubishi Heavy
Industry), as an arm, two 2-DOF fingers (Yasukawa Electric
Corporation) equipped with anthropomorphic fingertips, and a
vision sensor. The detailed description of the anthropomorphic
fingertip is shown in Fig. 4 [18]. It is basically imitating the
human’s finger, which has a metal rod as a bone, inner and

(a) A photo of the anthropomor-
phic fingertip

receptors:
strain gauges and PVDF films

an outer layer

an inner layer

a metal rod

(b) A cross sectional view of the fingertip

Fig. 4. An anthropomorphic fingertip used for the experiments

(1) (2) (3)

(a) The robot hand picks up an object: (1) the arm moves the hand
upward while the fingers are position-controlled to close, (2), (3) the
hand succeeds to pick up the object.

(4) (5)

(b) After the picking up the object, (4) the arm
moves the hand downward, (5) it continues to
move the hand while the fingers keep to touch
the object.

Fig. 5. An embedded behavior for the robot system to learn multi-modal
expression of the slip.

outer layers as cutis and epidermis layers. We adopted PVDF
(polyvinylidene fluoride) films as vibration receptors and foil
strain gauges (Kyowa sensor system solutions) as pressure
receptors. The absolute value of a PVDF film is adopted as the
output of a vibration receptor since the sign of the film data
has no sense about detecting the vibration. We embedded 6
films and 6 strain gauges in each layer, that is, one fingertip has
totally 24 receptors. The control rate is 1 kHz. Data from the
tactile receptors and the vision sensor are updated in 1 kHz
and 30 Hz, respectively. 1 pixel in the vision sensor equals
1.32 mm in the world coordinate frame.

B. A learning procedure

If the behavior of the robot is random, it takes so much
time to learn. To accelerate learning, we embedded a simple
pick-up behavior to the robot system shown in Fig. 5: (1)
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(a) The coded output of the vision
sensor v1 when there is relative mo-
tion in vision between the hand and
the object.
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(b) The coded output of the vision
sensor v2 when the hand moves up-
ward/downward in the vision.
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(c) Output of a vibration receptor #3
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(d) Output of a pressure receptor #2
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(e) Output of a vibration receptor #4
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(f) Output of a pressure receptor #5

Fig. 6. The coded output of the vision sensor and output of tactile receptors
during repeating the behavior 3 times.

the arm moves the hand upward in its Cartesian frame while
distance between fingers is controlled to be smaller gradually,
(2) the fingers slip along the surface of the object while the
grasping force is not enough, (3) the hand succeeds to pick
up the object, (4) after it succeeds to pick up, the arm moves
the hand downward in its Cartesian frame, (5) it continues to
move while the fingers slip along the surface of the object
downward. Additionally, contact areas at the fingertips is the
same through the experiments in the learning and after the
learning. Meanwhile, the sensor network learns the relation
between the receptors and the vision sensor.

We recorded the coded output of the vision sensor and
output of tactile receptors during the behavior (Fig. 6). The
robot repeats the behavior 3 times in 30 s. Fig. 6(a) and (b)
show the coded output of the vision sensor when there is
relative motion in vision sensor between the hand and the
object and when the hand moves upward/downward in the
vision sensor, respectively. Numerals at the top of the figures
indicate the number of the learning procedure in Fig. 5. A
reason that there is chattering in the coded output of the vision
sensor is as follows. The output of the vision sensors is updated
by each 33 ms. Because of the frame rate, the vision sensor
continues to output values −1, 0, or 1 at least 33 ms. If the
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Fig. 7. Detected occurrence of slip by the vision sensor and that by the
learned network after 7 learning trials.

vision sensor detects the motion of the target mark on the arm
and the object, the sensor outputs the values −1 or 1. However,
if the motion of the target mark is slow, the vision sensor does
not exactly output the values −1 or 1 in every frame because
of the quantization error. As a result, the output of the vision
sensor seems like chattering.

Fig. 6(c) and (e) show two typical time courses of the
unsigned normalized output of PVDF films. Depending on
the depth of the receptor, the sensitivity may change. Fig.
6(d) and (f) show two typical time courses of the normalized
output of strain gauges. Some of the receptors only generate
positive values like (f). We can speculate that those receptors
which only generate positive values measure grasping force.
Other receptors like (d) are sensing friction force. Additionally,
from Fig. 6(a) and (c), the output of the vibration receptor is
large when the vision sensor v1 equals −1: the slippage is
observed. In contrast, the output of the vibration receptor is
very small when the vision sensor v1 equals 1: the slippage
is not observed. Therefore, we expect that the outputs of the
vibration receptors are response to the slip.



C. Leaning expression of the slip through experiences

Before learning, the output of the network is since we set
the initial values of connection weights. Therefore, the robot
can detect occurrence of the slip and its direction only by
the vision sensor before learning. During the learning process,
the network finds the correlation between output of the vision
sensor and those of tactile receptors. We iterated the learning
procedure 7 times. Fig. 7(a) shows the detected occurrence of
the slip by the vision sensor and the learned network when the
robot picks up the object. In the figure, the network o1 does
not output the “no relative motion” from 2 to 6 s whereas
the vision sensor v1 outputs “no relative motion” at that
time. A reason is as follows. In the learning phase, vibration
receptors output the large signal only when the relative motion
occurs. As a result, connection weights between the vibration
receptors and o1 are reinforced. After the learning, the output
of the network o1 depends on the output of the vibration
receptors only. Additionally, the vibration receptor does not
output a signal when there is no relative motion because of
no vibration. Therefore, the network does not output the “no
relative motion” from 2 to 6 s. On the other hand, in Fig.
7(b) which shows the moving direction, the vision sensor v2

outputs “nothing moves” during 4.5 and 6 s because the robot
hand is stopped at 4.5 s. However, the robot hand continues to
grasp the object at this time. As a result, the pressure receptors
continue to output the signal. Therefore, even if the vision
sensor v2 outputs “nothing moves”, the network o2 outputs “up
ward”. The vision sensor outputs the signal when the sensor
only detects the motion. However, if the robot hand touches
the object, the vibration and the pressure receptors output the
signal. This is a difference of the characteristic between the
vision and tactile sensor.

Fig. 7(c) shows the magnified graph (a) during 0.6 and 1.1
s. The learned network can sense the slip earlier (0.76 s) than
just using the vision sensor (0.94 s). In this experiment system,
the resolution of the vision sensor and the moving speed of
the hand are 1.32 mm/pixel and 2.5 cm/s, respectively. Thus,
the vision sensor needs at least 2 frames (66 ms) to observe
the macro slip. The time difference of detected slip between
the vision sensor and the proposed network is 0.18 s which is
more than 5 frames. Therefore, we conclude that the network
can detect the micro slip before occurrence of the macro slip
whereas the vision sensor can detect only the macro slip.

Moreover, we iterated the same experiment 50 times, and
measured the first detected time of the slippage. As a result,
averages and standard deviations of the first detected time of
the slippage are shown in Fig. 7(d). The sensor network detects
the slip at 0.73 s whereas the vision sensor detects the slip at
0.89 s.

D. Pick up experiments utilizing the learned network

By utilizing the learned network, the robot can successfully
pick up the object without slips. We implemented a simple
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Fig. 9. The experimenter poured water into the cup that grasped by the
fingers. The amount of slip is smaller when it is controlled by the proposed
network than when it is controlled by the vision sensor.



controller: when the network or the vision sensor detects a
slip, the robot increased the grasping force by changing the
distance between the fingers. In Fig. 8, we show movements
of the object in the vision sensor (a) by utilizing only vision
sensor, and (b) by utilizing the proposed network. We could
find that if the network is utilized to detect the slip, the robot
can pick up the object 0.3 s earlier than just using the vision
sensor (1.65 s).

We conducted another experiment. At the beginning of the
experiment, the robot picks up the cup and holds the condition
of grasping. While the robot grasps the cup, we pour water
into it to increase the weight. The robot will detects a slip
and increase the grasping force not to drop it. Fig. 9 shows
the distance of the slip in the vision sensor. In the figure, we
compare two cases: with the proposed network and without
the network but only utilizing the vision sensor. We can
conclude that the slippage is reduced if we utilize the learned
network whereas the slippage is larger if we only use the vision
information to detect the slip.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a network that can acquire
the multi-modal expression of slips by making use of three
modalities: vibration, pressure, and vision sensations. Through
grasping experiences, the network is trained to sense not
only macro slips but micro ones. Experimental results have
demonstrated that the learned network can be utilized for
adaptive grasping.

Since the aim of this paper is to show basic learning ability
of the proposed network, the task given for the robot is
extremely simple: grasping and lifting up the object. Further
goal for developing such a sensor system is to deal with a
variety of tasks. Therefore, we should demonstrate further
ability of the network by achieving more tasks, and hopefully
really dexterous manipulation. In this sense, the information
provided by the vision sensor is also too poor, whether there is
relative movement or not and its direction, up or down. To deal
with more complicated tasks, we should discuss further about
what kind of information should be processed from the vision
sensor. If the robot achieves the complex tasks, the robot may
need the suitable visual information for learning the neural
network. Additionally, we should also consider the procedure
for learning.

In the proposed method, the learning and executing phases
are distinguished. We should further consider the network
architecture that can learn while it performs the given task.
If the network can learn in the context of sensory-motor
coordination, the expression of phenomena in the network
should be different since we do not have to reinforce the
network by a certain sensor (in this case, a vision sensor)
but just utilize the performance of the task.
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