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Abstract

Recognition of other agent intention in a multi-
agent environment is a very important issue
to realize social activities, for example, imita-
tion learning, understanding intention, cooper-
ative/competitive behavior, and so on. Con-
ventional approaches to infer the other agent
intention need a precise trajectory in Carte-
sian or joint space that is sometimes hard to
measure from the viewpoint of an observer. It
is also difficult to estimate a same intention
but with different realizations because they try
to match just a certain trajectory during the
trial. We propose a novel method of infer-
ence of other agent’s intention based on state
value estimation. The method does not need
a precise world model or coordination transfor-
mation system to deal with view dependency.
This paper shows an observer can infer an in-
tention of other not by precise object trajectory
in Cartesian space but by estimated state value
transition during the observed behavior.

1 Introduction

Inference of others’ intentions what they like to do is one
of the most formidable issues in multi-agent systems in
which actions appropriate for the others’ intentions are
needed to accomplish the cooperative tasks. For exam-
ple Schaal et al. [4] proposed a motor learning method
through imitation of teacher’s behaviors. They assume
that a learner can observe all state variables and their
trajectories in Cartesian coordinate system of the envi-
ronment or the joint space of the others and the learner
imitates manipulative tasks or gestures. Doya et al. [2]

proposed to estimate intention of other agent for imi-
tation learning and/or cooperative behavior acquisition
based on multi-module learning system. Takahashi et al.
[6] proposed a method that interprets instruction given
by a coach and divides the given complicated task to a
number of simple sub-tasks each of which can be learned

with a simple behavior learning module with limited ca-
pability. Most existing approaches assume the detailed
knowledge of the task, the environment, and the others
(their body structure and sensor/actuator configuration)
based on which they can transform the observed sensory
data of the others’ behaviors into the Cartesian coordi-
nate system of the environment or the joint space of the
others to infer their intentions. However, such an as-
sumption seems unrealistic in the real world and brittle
to the sensor/actuator noise(s) or any possible changes
in the parameters. In other words, it is very difficult
to infer others’ intentions based only on these geometric
parameters.

On the other hand, another approach that estimates
behavior of others through observer’s viewpoint with-
out any coordination conversion has been proposed, too.
Ledezma et al. [3] proposed to make a classifier to label
other agent’s behavior based on observation and use this
classifier to label the behavior. Their method, however,
needs a full teaching data of a set of labels and sequence
observation in order to model the other agent actions
and cannot handle the change the sequence of the other
agent’s actions even if it does the same task. Takahashi
et al. [5] presented an approach that constructs a set of
state transition models for the opponent behaviors from
a viewpoint of observer and selects an appropriate behav-
ior for observer according to a current situation in which
one of the models matches. The observer can choose one
model according to the other agent’s behavior, however,
it cannot infer the intention of the other agent.

Recently, reinforcement learning has been studied well
for motor skill learning and robot behavior acquisition.
It generates not only an appropriate policy (map from
states to actions) to achieve a given task but also an
estimated discounted sum of reward value that will be
received in future while the robot is taking the optimal
policy. We call this estimated discounted sum of reward
“state value.” This state value roughly indicates close-
ness to a goal state of the given task, that is, if the agent
is getting closer to the goal, the state value becomes
higher. This suggests that the observer may understand
which goal the agent likes to achieve if the state value of



the corresponding task is going higher.

The relationship between an agent and objects such
that the agent gets close to the object or the agent faces
to a direction is much easier to understand from the
observation, and therefore such qualitative information
should be utilized to infer what the observed agent likes
to do. The information might be far from precise ones,
however, it keeps topological information and we can
acquire good estimation of temporal difference of state
value with this method.

Then, we propose a novel method to apply the above
idea to infer the others’ intentions supposing that the ob-
server has already estimated the state values of all kinds
of tasks the observed agent can do. The method does not
need a precise world model or an accurate coordination
transformation system to cope with the problem of view
dependency. We apply the method to a simple RoboCup
situation where the agent has kinds of tasks such as nav-
igation, shooting a ball into a goal, passing a ball to a
teammate, and so on, and the observer judges which task
the agent is now achieving from the observation with es-
timated state values. The preliminary experiments are
shown and future issues are discussed.

2 Intention Inference by State Value

Estimation

In this section, a rough description of state value func-
tion and behavior inference is described. We assume that
the observer has already acquired a number of behaviors
based on a reinforcement learning method. Each behav-
ior module can estimate state value at arbitrary time
t to accomplish the specified task. Then, the observer
watches the performer’s behavior and maps the sensory
information from an observer viewpoint to the agent’s
one with a mapping of state variables. The behavior
modules estimate the state value of the observed behav-
ior and the system selects ones that matches estimation
of state value.

2.1 State Value Function
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Figure 1: A basic model of agent-environment interac-
tion

Fig.1 shows a basic model of reinforcement learning.
An agent can discriminate a set S of distinct world
states. The world is modeled as a Markov process, mak-
ing stochastic transitions based on its current state and
the action taken by the agent based on a policy π. The
agent receives reward rt at each step t. State Value V π,
discounted sum of the reward received over time under

Figure 2: Sketch of state value propagation

Figure 3: Sketch of a state value function

execution of policy π, will be calculated as follows:

V (s) =
inf
∑

t=0

γtrt . (1)

Figs.2 and 3 show sketches of a state value function
where a robot receives a positive reward when it stays at
a specified goal while zero reward else. The state value
will be highest at the state where the agent receives a
reward and discounted value is propagated to the neigh-
bors states (Fig.2). As a result, the state value function
seems to be a mountain as shown in Fig.3. The state
value becomes bigger and bigger if the agent follows the
policy π.

2.2 Basic Idea of Intention Recognition

Figure 4: Sketch of different behaviors in a grid world

Fig.4 shows an example task of navigation in a grid
world. There is a goal state at the top center of the
world. An agent can move one of the neighbor grids
every one-step. It receives a positive reward only when it
stays at the goal state while zero else. There are various
optimal policies for this task as shown in Fig.4. If one
tries to match the action that the agent took and the
one based on a certain policy in order to infer the agent’s
intention, you have to maintain various optimal policies
and evaluate all of them in the worst case.

On the other hand, if the agent follows an optimal
policy, the state value is going up even if the agent takes



Figure 5: Inferring intention by the change of state value

an arbitrary policy from the optimal ones. Fig.5 shows
that the state value becomes larger even if the agent
takes different paths. We can regard that the agent takes
an action based on one policy when the state value is
going up even if it follows various kind of policies.

This indicates a possibility of robust intention recog-
nition even if they would be several optimal policies for
the current task. An agent tends to acquire various poli-
cies depending on the experience during learning. The
observer cannot practically estimate the agent’s experi-
ence beforehand, therefore, it needs a robust intention
recognition method provided by the estimation of state
values.

2.3 Modular Learning System

Figure 6: Modular Learning System

Figure 7: Behavior inference diagram

In order to evaluate a number of behaviors simulta-
neously, we adopt a modular learning system. Jacobs
and Jordan [1] proposed a mixture of experts, in which
a set of the expert modules learn and the gating system
weights the output of each expert module for the final
system output. Fig.6 shows a sketch of such a modu-
lar learning system. We prepare a number of behavior
modules each of which acquired a state value function
for one goal-oriented behavior. A learning module has a
controller that calculates an optimal policy based on the

state value function. Gating module selects one output
from a module according to the agent’s intention.

2.4 Intention Inference under Multiple

Candidates

At intention inference stage, the system uses same be-
havior modules as shown in Fig.7. While an observer
watches an behavior of a performer, the system esti-
mates the relationship between the agent and objects
such as rough direction and distance of the objects from
the agent. Then, each behavior module estimates the
state value based on the rough estimated state of the
agent and sends it to the selector. The selector watches
the sequence of the state values and selects a set of possi-
ble behavior modules of which state values are going up
as the performer is taking the behavior. As mentioned
in 2.1, if the state value goes up during a behavior, it
means the module seems valid for explaining the execut-
ing behavior execution. The goal state/reward model
of this behavior module represents the intention of the
agent.

Here we define reliability g that indicates how much
the intention inference would be reasonable for the ob-
server as follow:

g =







g + β if V (st) − V (st−1) > 0 and g < 1
g if V (st) − V (st−1) = 0
g − β if V (st) − V (st−1) < 0 and g > 0

where β is an update parameter, which is 0.1 in this
paper. This equation indicates that the reliability g will
become large if the estimated state value rises up and
it will become low when the estimated state value goes
down. We put another condition in order to keep g value
from 0 to 1.

3 Task and Environment

Figure 8: Environment

Figure 9: A real robot

Fig.8 shows a situation the agents are supposed to en-
counter. An agent shows a behavior and the observer
estimates the behavior using a set of behavior modules
of its own. Fig.9 shows a mobile robot we have designed
and built. Fig.10 shows the viewer of our simulator for
our robots and the environment. The robot has a nor-
mal perspective camera in front of its body. It has an
omni-directional camera, however, it doesn’t use it, here.
A simple color image processing is applied to detect the
ball, the interceptor, and the receivers on the image in



Table 1: Prepared Modules and their state variables
Module State variables
GoToBall ball position y on the image of perspective camera
GoToYellow yellow goal position y on the image of perspective camera
GoToBlue blue goal position y on the image of perspective camera
ShootYellow ball position y, yellow goal position y, and angle between them θ on the image
ShootBlue ball position y, blue goal position y, and angle between them θ on the image
PassToTeammate1 ball position y, teammate 1 position y, and angle between them θ on the image
PassToTeammate2 ball position y, teammate 2 position y, and angle between them θ on the image

Figure 10: Viewer of simulator

real-time (every 33ms). The left of Fig.10 shows a sit-
uation the agent encounters while the top right images
show the simulated ones of the normal and the bottom
right omni vision systems. The mobile platform is an
omni-directional vehicle (any translation and rotation
on the plane). Table 1 shows a list of prepared behav-
ior modules and their state variables. The observer has
learned the behaviors and its state value estimator based
on a reinforcement learning method beforehand.

3.1 State Variables and Estimation

Figure 11: State variables representing distances to the
objects

Figure 12: A state variable θ representing the positional
relationship between the objects

Figure 13: A state variable θ when one of the objects is
out of sight

We use the distances of the ball, goal, and player from
the agent and their relative angles between them on the
image of the frontal camera on the robot. Figs.11 and 12
show examples of those state variables. We divide this
state space into a set of region to obtain state id. The
space of position value is quantized into 6 subspaces and
the space of relative angle between objects into 5 spaces
here. Behavior modules define their policy and state
value function in this state space.

Figure 14: Estimated state variables representing dis-
tances

Figure 15: An estimated state variable θ representing
the position relation among objects

When an observer infers an intention of the performer,
it has to estimate its state. Here, we introduce a sim-
ple method of state estimation of the performer. Fig.14
shows the estimated distances from the agent and the
objects. Fig.15 shows the estimated angle between the
objects. The observer uses these estimated state for es-
timation of state value instead of its own state shown in
Figs.11 and 12. These estimated states with this method



are far from precise ones, however, it keeps topological
information and we can acquire good estimation of tem-
poral difference of state value with this method.

4 Experiments

The observer has learned a number of behaviors shown in
Table 1 before it tried to infer the performer’s intention.
We gave the observer many experiences enough to cover
all exploration space in state space.

4.1 Same behavior demonstration

(a) An overview of the behavior
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Figure 16: Inferring intention of a performer trying to
shoot a ball to the blue goal

After the behavior acquisition, we let the performer
play one of the behaviors from Table 1 and the observer
infers which behavior the other is taking. Fig.16 shows
an example behavior performed by another agent. The
performer showed exactly same behavior that the ob-
server acquired in behavior learning stage, here. The
bottom right agent shows ”ShootBlue” behavior and the
top left observer watches the behavior. The observer

(a) An overview of the behavior
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(c) Reliability gi of each behavior module

Figure 17: Inferring intention of the performer trying to
shoot ball to the blue goal in a real robot experiment

tries to keep the performer in own perspective during
the behavior. Fig.16 (a) shows the sequence of the be-
havior. Fig.16 (b) and (c) show sequences of estimated
state value and reliability of the inferred intentions of
the agent, respectively. The green line indicates the be-
havior of shooting a ball into a blue goal and goes up
during the trial. The observer successfully inferred the
intention of the performer.

Figure 17 shows a result of inferring intention of the
performer trying to shoot ball to the blue goal in a real
robot experiment. The situation and the result are sim-
ilar to the simulation and it shows successfully infer the
intention of the performer.

Fig.18 shows an example passing behavior performed
by an agent, a sequence of estimated state value of each
modules, and a sequence of reliability of inferred inten-
tion, respectively. These figures show that the observer



(a) An overview of the behavior
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(c) Reliability gi of each behavior module

Figure 18: Inferring intention of a performer trying to
pass a ball to teammate1

can infer the performer’s passing behavior (purple line),
too. The orange line indicates the reliability of going to
a ball behavior and it also goes up during the trial be-
cause the agent is continuously approaching to the ball
during the trial to pass it to the teammate.

4.2 Different behavior demonstration

The observer cannot assume that the performer will take
exactly same behavior even if its intention is same. We
prepare other different behaviors for the demonstration
of the performer. Fig.19 (a) shows an example of the dif-
ferent shooting behavior demonstrated by the performer.
The learned behavior by the observer is a zippy motion as
shown in Fig.16. On the other hand, the demonstrated
behavior is a more smooth motion. Therefore, the state
transition probability will be different from each other.
Figs.19 (b) and 19 (c) show sequences of estimated state
value of each modules and a sequence of reliability of
inferred intention, respectively. These figures show that

(a) An overview of the behavior
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Figure 19: Inferring intention of a performer trying to
shoot a ball to the blue goal with different manner

the observer can infer the performer’s intention of shoot-
ing (green line).

4.3 Comparison with System based on

Coordination Translation

In this section, we compare performances between our
proposed method and the one based on state estima-
tion using coordinate transformation system and tracing
state transition probability that is proposed by others,
for example [2]. In order to estimate the state value of
a behavior module through the observation of the per-
former, there must be a rough coordinate transformation
matrix beforehand. Figs.20 and 21 show a rough sketch
of the transformation system. In order to estimate y

position on the performer’s view image, the observer as-
sumes there are tiles on the floor, maps the positions of
an object and the performer, estimates rough distance
between them, and maps the distance to the y position
on the image of the observer’s view. Fig.21 shows a



Figure 20: Estimation of y position of the performer’s
image

Figure 21: Estimation of direction from a performer to
an object

sketch of estimation of direction from the performer to
an object. The lower right rectangle shows an exam-
ple image from the perspective camera and it captures
the performer, a ball, and a goal. We assume that it
can detect a direction of the performer on the image un-
der a vision system. We put a potential image plane
in front of the agent and estimate rough x positions of
the objects on the image of the performer’s view. Fig.21
shows that the ball is mapped to the left side on the
image and the goal to an area of lost to the right side
from the camera image. Table 2 shows the success rate

Table 2: Inferring intention performances of the pro-
posed method and the one with coordination transfor-
mation system

Proposed method Method based on
state trans. prob.

ShootBlueGoal1 84% 24%
ShootBlueGoal2 78% 11%
ShootYellowGoal 86% 20%

PassToTeammate1 76% 34%

of intention inference of the proposed method and the
one with the coordination transformation system. The
proposed method shows much better results over the be-
haviors than the one with the coordination transforma-
tion system. ”ShootBlueGoal1” indicates a case of in-
ference of shooting behavior identical to the observer’s
one. ”ShootBlueGoal2” indicates a case of inference of
shooting behavior but different from the observer’s one.

5 Future work

This basic idea can be applied for not only intention in-
ference but also cooperative behavior acquisition. How
to define a reward function for cooperative behavior ac-
quisition in multi-agent system is one of the most inter-
esting issues. The proposed method can infer other’s in-
tention and estimate the reward/state value of the agent
for each step. This indicates that the observer can ex-
plore some actions and evaluate how much they will con-
tribute to the other efficiently. Then, it can learn coop-
erative behavior based on a certain reinforcement learn-
ing approach without any heuristic/hand-coded reward
function by which it evaluates a reward of itself based
on the estimated reward/state value of the other agent.
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