
Learning Utility for Behavior Acquisition and
Intention Inference of Other Agent

Yasutake Takahashi, Teruyasu Kawamata, and Minoru Asada*
Dept. of Adaptive Machine Systems,

Graduate School of Engineering, Osaka University
Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan

*JST ERATO Asada Synergistic Intelligence Project
{yasutake, kawamata, asada}@er.ams.eng.osaka-u.ac.jp

Abstract— Neurophysiology revealed the existence of mirror
neurons in brain of macaque monkeys and they shows similar
activities during executing an observation of goal directed move-
ments performed by self and other. The concept of the mirror
neurons/systems is very interesting and suggests that behavior
acquisition and the inferring intention of other are related to
each other. That is, the behavior learning modules might be
used not only for behavior acquisition/execution but also for the
understanding of the behavior/intention of other.

We propose a novel method not only to learn and execute a
variety of behaviors but also to infer the intentions of others
supposing that the observer has already estimated the utility
(state values in reinforcement learning scheme) of all kinds of
behaviors the observed agent can do. The method does not need
a precise world model or coordination transformation system to
deal with view difference caused by different viewpoints. This
paper shows an observer can infer an intention of other not by
precise object trajectory in global/egocentric coordinate space
but by estimated utility transition during the observed behavior.

I. INTRODUCTION

Recent robots in real world are required to perform multiple
tasks, adapt their behaviors in an encountered multi-agent
environment, and learn new cooperative/competitive behav-
iors through the interaction with other agents. Reinforcement
learning has been studied well for motor skill learning and
robot behavior acquisition in single/multi agent environments.
However, it is unrealistic to acquire a various behaviors from
scratch without any instruction from others in real environment
because of huge exploration space and enormous learning
time. Therefore, importance of instructions from others has
been increasing, and in order to understand the instructions,
it is necessary to infer their intentions to learn purposive
behaviors.

Understanding other agent intention is also a very important
issue to realize social activities, for example, imitation learn-
ing, cooperative/competitive behavior acquisition, and so on.
Recently, many researchers have studied on methods of other
agent’s behavior recognition system. For example Schaal et
al. [3] proposed a motor learning method through imitation of
teacher’s behaviors. They assume that a learner can observe
all state variables and their trajectories in global coordinate
system of the environment or the joint space of the others and
the learner imitates manipulative tasks or gestures. Doya et

al. [2] proposed to estimate intention of other agent for imi-
tation learning and/or cooperative behavior acquisition based
on multi-module learning system. These typical approaches
assume the detailed knowledge of the task, the environment,
and the others (their body structure and sensor/actuator con-
figuration) based on which they can transform the observed
sensory data of the others’ behaviors into the global coordinate
system of the environment, or an egocentric parameter space
like the joint space of the others to infer their intentions.
However, such an assumption seems unrealistic in the real
world and brittle to the sensor/actuator noise(s) or any possible
changes in the parameters. Furthermore, there are a variety of
behaviors for achieving a certain task. The variety will be
caused by constraints of body or environments or experiences
received so far. It is almost impossible to cover all variation
of behaviors even for one certain tasks. In other words, it is
very difficult to infer others’ intentions based only on these
geometric parameters.

These two issues, behavior acquisition/execution and recog-
nition of intention of other, have been discussed independently.
However, neurophysiology recently revealed the existence
of mirror neurons/systems in brain and they shows similar
activities during executing an observation of goal directed
movements performed by self and another one. We do not
discuss about this mirror neurons/system here in details,
however, the concept of the mirror neurons/system is very
interesting and suggests that behavior acquisition/execution
and the inferring intention of other are related to each other.
That is, the behavior learning modules might be used not only
for behavior acquisition but also for the recognition of the
behavior/intention of other.

Reinforcement learning generates not only an appropriate
behavior (action map from states to actions) to achieve a
given task but also an utility of the behavior, an estimated
discounted sum of reward value that will be received in
future while the robot is taking the optimal policy. We call
this estimated discounted sum of reward “state value.” This
utility roughly indicates closeness to a goal state of the given
task, that is, if the agent is getting closer to the goal, the
utility becomes higher. This suggests that the observer may
understand which goal the agent likes to achieve if the utility
of the corresponding task is going higher. The relationship



between an agent and objects such that the agent gets close to
the object or the agent faces to a direction is much easier to
understand from the observation, and therefore such qualitative
information should be utilized to infer what the observed agent
likes to do. The information might be far from precise ones,
however, it keeps qualitative information and we can estimate
well the temporal difference of the utility. If the observer
can estimate the utility of each behaviors of the other, it
might be possible to recognize the other’s intention, therefore
the observer not only imitate the observed behavior but also
cooperative/competitive behaviors according to the recognized
intention.

We propose a novel method not to only learn/execute a
variety of behaviors but also to infer the intentions of others
supposing that the observer has already estimated the utility
(state values in reinforcement learning scheme) of all kinds
of behaviors the observed agent can do. The method does
not need a precise world model or an accurate coordination
transformation system to cope with the problem of view
dependency. We apply the method to a simple RoboCup
situation where the agent has kinds of tasks such as navigation,
shooting a ball into a goal, passing a ball to a teammate,
and so on, and the observer judges which goal the agent is
now achieving from the observation with estimated utilities.
The preliminary experiments are shown and future issues are
discussed.

II. BEHAVIOR LEARNING BASED ON REINFORCEMENT
LEARNING

In this section, reinforcement learning scheme, state value
(utility) function and modular learning system for various
behavior acquisition/execution are briefly explained.

A. Acquisition of Behavior Utility
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Fig. 1. A basic model of agent-environment interaction

Fig.1 shows a basic model of reinforcement learning. An
agent can discriminate a set S of distinct world states. The
world is modeled as a Markov process, making stochastic
transitions based on its current state and the action taken by
the agent based on a policy π. The agent receives reward rt

at each step t. State value V π (utility), discounted sum of the
reward received over time under execution of policy π, will
be calculated as follows:

V (s) =
inf∑
t=0

γtrt . (1)

Fig. 2. Sketch of state value propagation
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Fig. 3. Sketch of a state value function

Figs.2 and 3 show sketches of a state value function where a
robot receives a positive reward when it stays at a specified
goal while zero reward else. The state value will be highest
at the state where the agent receives a reward and discounted
value is propagated to the neighbors states (Fig.2). As a result,
the state value function seems to be a mountain as shown in
Fig.3. The state value becomes bigger and bigger if the agent
follows the policy π. The agent updates its policy through the
interaction with the environment in order to receive positive
rewards in future.

B. Modular Learning System

Fig. 4. Modular Learning System

In order to learn/execute a number of behaviors simultane-
ously, we adopt a modular learning system. Jacobs and Jordan
[1] proposed a mixture of experts, in which a set of the expert
modules learn and the gating system weights the output of each
expert module for the final system output. Fig.4 shows a sketch
of such a modular learning system. We prepare a number
of behavior modules each of which has already acquired a
state value (utility) function for one goal-oriented behavior.
A learning module has a controller that calculates an optimal
policy based on the utility function. Gating module selects one
output from a module according to the agent’s intention.



III. INTENTION INFERENCE BY BEHAVIOR UTILITIES

We assume that the observer has already acquired a number
of behaviors based on a reinforcement learning method. Each
behavior module can estimate utility at arbitrary time t to
accomplish the specified task. Then, the observer watches the
performer’s behavior and maps the sensory information from
an observer viewpoint to the agent’s one with a mapping of
state variables. The behavior modules estimate the utility of
the observed behavior and the system selects ones that are
increasing their utilities.

A. Basic Idea of Intention Inference

Fig. 5. Sketch of different behaviors in a grid world

Fig. 6. Inferring intention by the change of state value

Fig.5 shows an example task of navigation in a grid world.
There is a goal state at the top center of the world. An agent
can move one of the neighbor grids every one-step. It receives
a positive reward only when it stays at the goal state while
zero else. There are various optimal/suboptimal policies for
this task as shown in Fig.5. If one tries to match the action
that the agent took and the one based on a certain policy in
order to infer the agent’s intention, he or she has to maintain
various optimal policies and evaluate all of them in the worst
case.

On the other hand, if the agent follows an appropriate policy,
the utility is going up even if it is not exactly optimal one.
Fig.6 shows that the utility becomes larger even if the agent
takes different paths. We can regard that the agent takes an
action based on one policy when the utility is going up even
if it follows various kind of policies.

This indicates a possibility of robust intention recognition
even if several appropriate policies can exist for the current
task. An agent tends to acquire various policies depending on
the experience during learning. The observer cannot practi-
cally estimate the agent’s experience beforehand, therefore, it
needs a robust intention recognition method provided by the
estimation of utilities.

B. Intention Inference under Multiple Candidates

Fig. 7. Behavior inference diagram

At intention inference stage, the system uses the same
behavior modules as shown in Fig.7. While an observer
watches an behavior of a performer, the system estimates
the relationship between the agent and objects such as rough
direction and distance of the objects from the agent. Then, each
behavior module estimates the utility based on the estimated
state of the performer and sends it to the selector. The selector
watches the sequence of the utilities and selects a set of
possible behavior modules of which utilities are going up
as a set of behaviors the performer is currently taking. As
mentioned in II-A, if the utility goes up during a behavior, it
means the module seems valid for explaining the behavior. The
goal state/reward model of this behavior module represents the
intention of the agent.

Here we define reliability g that indicates how much the
intention inference would be reasonable for the observer as
follow:

g =

 g + β if V (st) − V (st−1) > 0 and g < 1
g if V (st) − V (st−1) = 0
g − β if V (st) − V (st−1) < 0 and g > 0 ,

where β is an update parameter, and 0.1 in this paper. This
equation indicates that the reliability g will become large if
the estimated utility rises up and it will become low when the
estimated utility goes down. We put another condition in order
to keep g value from 0 to 1.

IV. TASK AND ENVIRONMENT

Fig. 8. Environment

Fig. 9. A real robot

Fig.8 shows a situation the agents are supposed to encounter.
An agent shows a behavior and the observer estimates the
behavior using a set of behavior modules of its own. Fig.9
shows a mobile robot we have designed and built. Fig.10



Fig. 10. Viewer of simulator

shows the viewer of our simulator for our robots and the
environment. The robot has a normal perspective camera in
front of its body. It has an omni-directional camera, however,
it doesn’t use it, here. A simple color image processing is
applied to detect an ball, a performer, and teammates on the
image in real-time (every 33ms).

The left of Fig.10 shows a situation the agent encounters
while the top right images show the simulated ones of the
normal and the bottom right omni vision systems. The mobile
platform is an omni-directional vehicle (any translation and
rotation on the plane). Table I shows a list of prepared behavior
modules and their state variables. The observer has learned the
behaviors and its utility estimator based on a reinforcement
learning method beforehand.

Fig. 11. State variables representing
distances to the objects

Fig. 12. A state variable θ represent-
ing the positional relationship between
the objects

Fig. 13. A state variable θ when one of the objects is out of sight

We prepared the distances of positions of a ball, a goal,
and players from the bottom and their relative angles between
them on the image of the frontal camera on the robot as
state variables. Figs.11 and 12 show examples of those state
variables. We divide this state space into a set of region to
obtain state id. The space of position value is quantized into
6 subspaces and the space of relative angle between objects
into 5 spaces here. Behavior modules define their policy and
utility function in this state space.

Fig. 14. Estimated state variables
representing distances

Fig. 15. An estimated state variable
θ representing the position relation
among objects

When an observer infers an intention of the performer, it
has to estimate the state of the performer. Here, we introduce
a simple method of state estimation of the performer. Fig.14
shows the estimated distances from the agent and the objects.
Fig.15 shows the estimated angle between the objects. The
observer uses these estimated state for estimation of utility
instead of its own state shown in Figs.11 and 12. These
estimated states with this method are far from precise ones,
however, it keeps topological information and we can acquire
good estimation of temporal difference of utility with this
method.

V. EXPERIMENTS

The observer has learned a number of behaviors shown
in Table I before it tried to infer the performer’s intention.
We gave the observer many experiences enough to cover all
exploration space in state space.

A. Same behavior demonstration

After the behavior acquisition, we let the performer play
one of the behaviors from Table I and the observer infers
which behavior the other is taking. Fig.16 shows an example
behavior performed by another agent. The performer showed
exactly same behavior that the observer acquired in behavior
learning stage, here. The bottom right agent shows ”Shoot-
Blue” behavior and the top left observer watches the behavior.
The observer tries to keep the performer in own perspective
during the behavior. Fig.16 (a) shows the sequence of the
behavior. Fig.16 (b) and (c) show sequences of estimated
utility and reliability of the inferred intentions of the agent,
respectively. The green line indicates the behavior of shooting
a ball into a blue goal and goes up during the trial. The
observer successfully inferred the intention of the performer.

Fig.17 shows an example passing behavior performed by
an agent, a sequence of estimated utility of each modules,
and a sequence of reliability of inferred intention, respectively.
These figures show that the observer can infer the performer’s
passing behavior (purple line), too. The orange line indicates
the reliability of going to a ball behavior and it also goes up
during the trial because the agent is continuously approaching
to the ball during the trial to pass it to the teammate.

Fig.21 shows an experimental result with real robots. A per-
former wearing a magenta marker shows a shooting behavior
and a observer wearing a cyan marker estimates the behavior
successfully.



TABLE I
PREPARED MODULES AND THEIR STATE VARIABLES

Module State variables
GoToBall ball position y on the image of perspective camera
GoToYellow yellow goal position y on the image of perspective camera
GoToBlue blue goal position y on the image of perspective camera
ShootYellow ball position y, yellow goal position y, and angle between them θ on the image
ShootBlue ball position y, blue goal position y, and angle between them θ on the image
PassToTeammate1 ball position y, teammate 1 position y, and angle between them θ on the image
PassToTeammate2 ball position y, teammate 2 position y, and angle between them θ on the image

B. Different behavior demonstration

The observer cannot assume that the performer will take
exactly same behavior of the observer even if its intention is
same. We prepare other different behaviors for the demon-
stration of the performer. Fig.18(a) shows an example of the
different shooting behavior demonstrated by the performer.
The learned behavior by the observer is a zippy motion as
shown in Fig.16. On the other hand, the demonstrated behavior
is a smoother motion. Therefore, the state transition probability
will be different from each other. Figs.18 (b) and 18 (c) show
sequences of estimated utility of each modules and a sequence
of reliability of inferred intention, respectively. These figures
show that the observer can infer the performer’s intention of
shooting (green line).

C. Comparison with A Typical Approach

In this section, we compare performances between our
proposed method and the one based on state estimation using
coordinate transformation system and tracing state transition
probability. In order to estimate the utility of a behavior
module through the observation of the performer, there must be
a rough coordinate transformation matrix beforehand. Figs.19
and 20 show a rough sketch of the transformation system. In
order to estimate y position on the performer’s view image,
the observer assumes there are tiles on the floor, maps the
positions of an object and the performer, estimates rough
distance between them, and maps the distance to the y position
on the image of the observer’s view. Fig.20 shows a sketch
of estimation of direction from the performer to an object.
The lower right rectangle shows an example image from the
perspective camera and it captures the performer, a ball, and a
goal. We assume that it can detect a direction of the performer
on the image under a vision system. We put a potential image
plane in front of the agent and estimate rough x positions
of the objects on the image of the performer’s view. Fig.20
shows that the ball is mapped to the left side on the image and
the goal to an area of lost to the right side from the camera
image. Table II shows the success rate of intention inference of
the proposed method and the one with the coordination trans-
formation system. The proposed method shows much better
results over the behaviors than the one with the coordination
transformation system. ”ShootBlueGoal1” indicates a case of
inference of shooting behavior identical to the observer’s one.
”ShootBlueGoal2” indicates a case of inference of shooting
behavior but different from the observer’s one.

TABLE II
INFERRING INTENTION PERFORMANCES OF THE PROPOSED METHOD AND

THE ONE WITH COORDINATION TRANSFORMATION SYSTEM

Proposed method Method based on
state trans. prob.

ShootBlueGoal1 84% 24%
ShootBlueGoal2 78% 11%
ShootYellowGoal 86% 20%
PassToTeammate1 76% 34%

VI. FUTURE WORK

This basic idea can be applied for not only intention
inference but also cooperative behavior acquisition. How to
define a reward function for cooperative behavior acquisition
in multi-agent system is one of the most interesting issues.
The proposed method can infer intention of other and estimate
the reward/utility of the agent for each step. This indicates that
the observer can explore some actions and evaluate how much
they will contribute to the other efficiently. Then, it can learn
cooperative behavior based on a certain reinforcement learning
approach without any heuristic/hand-coded reward function by
which it evaluates a reward of itself based on the estimated
reward/utility of the other agent.

REFERENCES

[1] R. Jacobs, M. Jordan, Nowlan S, and G. Hinton. Adaptive mixture of
local experts. Neural Computation, 3:79–87, 1991.

[2] Doya K., Sugimoto N., Wolpert D.M., and Kawato M. Selecting optimal
behaviors based on contexts. In International Symposium on Emergent
Mechanisms of Communication, pages 19–23, 2003.

[3] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational ap-
proaches to motor learning by imitation, 2004.



(a) An overview of the behavior
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(c) Reliability gi of each behavior module
Fig. 16. Result of inferring intention of shooting a ball to the blue goal

(a) An overview of the behavior

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

S
ta

te
 v

al
ue

 V
i

T[sec]

GoToBall
GoToBlueGoal
GoToYellowGoal
ShootBlueGoal

ShootYellowGoal
PassToTeammate1
PassToTeammate2

(b) Utility Vi of each behavior module

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

R
el

ia
bi

lit
y 

g i

T[sec]

GoToBall
GoToBlueGoal
GoToYellowGoal
ShootBlueGoal

ShootYellowGoal
PassToTeammate1
PassToTeammate2

(c) Reliability gi of each behavior module
Fig. 17. Result of inferring intention of passing a ball to teammate1



(a) An overview of the behavior
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(c) Reliability gi of each behavior module
Fig. 18. Result of inferring intention of shooting a ball to the blue goal with
different manner

Fig. 19. Estimation of y position of the performer’s image

Fig. 20. Estimation of direction from a performer to an object

(a) An overview of the behavior
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Fig. 21. Experimental result with a real robot system of inferring intention
of the performer trying to shoot ball to the blue goal


