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Abstract—Studies on lexicon acquisition systems are gaining attention in the search for a natural
human–robot interface and a test environment to model the infant lexicon acquisition process.
Although various lexicon acquisition systems that ground words to sensory experience have been
developed, existing systems have clear limitations on the ability to autonomously associate words to
objects. This limitation is due to the fact that categories for words are formed in a passive manner,
either by teaching of caregivers or finding similarities in visual features. This paper presents a system
for lexicon acquisition through behavior learning. Based on a modified multi-module reinforcement
learning system, the robot is able to automatically associate words to objects with various visual
features based on similarities in affordances or in functions. The system was implemented on a mobile
robot acquiring a lexicon related to different rolling preferences. The experimental results are given
and future issues are discussed.

Keywords: Active sensing; affordance; categorization; lexicon acquisition; multi-module reinforce-
ment learning system.

1. INTRODUCTION

Various robots intended to coexist with human users in everyday life have been
developed [1, 2]. Users expect rich communication with these robots. However,
current domestic robots can just refer to fixed types of objects or behaviors in their
language communication. In order to enrich their communication, the design of
the ability to acquire and share a lexicon with users is a fundamental issue to be
developed. Building robots that acquire a lexicon also gives insights on language
acquisition in human children. The idea to consider words directly grounded in a
physical embodiment as the basis for acquiring more abstract words and syntax, that

∗To whom correspondence should be addressed. E-mail: asada@ams.eng.osaka-u.ac.jp



1128 S. Takamuku et al.

has been suggested in cognitive linguistics [3], is now supported by several robot
experiments. For example, Harnad et al. showed how symbol manipulation can be
constrained by directly grounding basic symbols in cognitive representations such
as categories [4]. Sugita and Tani showed how compositional syntax could emerge
from an attempt to acquire a generalized correspondence between word sequences
and sensorimotor flows [5].

Several robotics research projects have investigates the problem of acquiring a
new lexicon from sensory experience. Steels and Kaplan [6] investigated lexicon
acquisition in pet robots, and showed that intense interaction between a learner and
a caregiver (e.g., the feedback from the caregiver about the utterance by the learner
is effective for lexicon acquisition) is essential for acquiring object categories for
communication. Roy [7] developed a system that learns words from untranscribed
acoustic and video inputs, and showed that the speech segmentation process can
be accelerated by considering mutual information between speech segments and
visual categories of objects that co-occur. Although these studies have done much
to advance our understanding of the lexicon acquisition problem from the learner’s
point of view, their systems have clear limitations on the ability to autonomously
associate words to objects. In their system, categories for word acquisition are
mostly formed in a passive manner, either by finding similarities in visual features
or the teaching of caregivers. Research on computer vision has shown that such
passive approaches have many difficulties in object recognition [8] that seems
essential for lexicon acquisition. On the other hand, some psychological studies
on word association of human children indicate the importance of learners’ actions.
For example, Nelson et al. [9] showed that even 2-year-old children can associate
names to new objects in accordance with the functions when the function of the
object is apparent to them. This kind of word association seems effective, since our
environment is full of artifacts created for particular functional purposes. Another
study by Kobayashi [10] showed that a caregiver’s action on objects influences
children’s inferences about word meanings. The result of these studies can be
interpreted as that those children associate words to new objects in accordance
to the affordances [11] of the objects. Acquiring words related to affordance is
important for children to know the appropriate behaviors for the objects. Despite the
expected effect on lexicon acquisition, existing robot systems of lexicon acquisition
are not capable of such word associations based on the learner’s behaviors and
object functions.

This paper focuses on the issue of how lexicon learners can acquire words
and associate them to different objects based on similarities in functions or in
affordances. Following the discussion of symbol grounding [12], we formulate
this issue as a task to acquire object categories related to function or affordance
and associate appropriate labels to them (we assume one-to-one correspondence
between a label and a category when they are related). With regard to the issue
of obtaining object categories, several researchers have indicated how effective the
learner’s actions are. Fitzpatrick and Metta [13] showed how object affordance can



Lexicon acquisition 1129

be explored by rolling the objects and Ogata et al. [14] adopted RNNPB with multi-
modal sensory input to improve the object recognition performance. Their system
succeeded in forming representations suitable for object recognition. However, the
variety of categories obtained by their approaches seems limited due to the fact
that actions performed by their system are fixed a priori. Actions for different
functions or affordances vary and it seems almost impossible for the designers to
prepare all kinds of behaviors in advance. Thus, we propose a system that forms
categories by learning and identifying specific behaviors that can be performed with
the objects. In order to acquire the word ‘cylinder’, for example, the learner acquires
the behavior to face the lateral aspect of the object and roll it. The behaviors with the
objects are learned and identified by a multi-module learning system [15] modified
for reinforcement learning. We show a method to associate sensorimotor concepts
represented in the multi-module learning system with labels without assuming the
labels to be given simultaneously with the activation of those learning modules.

The paper is organized as follows. First, we explain our approach of lexicon
acquisition based on behavior learning. Then, experimental results show the validity
of our approach. Finally, future issues are discussed and conclusions are given.

2. LEXICON ACQUISITION BASED ON BEHAVIOR LEARNING

2.1. Basic idea

In our study, we address the task of learning labels for objects given by a caregiver
(Fig. 1) and associating appropriate labels to new objects based on similarities in
functions or in affordances. The learner is considered successful when it answers
appropriate labels for given objects in view. The actual lexicon acquisition task
involves various difficult tasks such as extracting individual words from continuous
utterances and attending to the object intended by the caregiver. However, in order
to focus on the label association issue, we do not deal with these tasks here.

Figure 1. Lexicon acquisition environment.
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The lexicon acquisition process of the system consists of four sub-processes:

A Learn object-oriented behaviors.

B Categorize (photometric) visual feature space based on object-oriented behav-
iors.

C Categorize (photometric) visual feature space based on labels given by the
caregiver.

D Learn the correspondence between object-oriented behaviors and labels.

A is an process where the learner learns the behavior for given objects. The
behaviors specified for a certain affordance or function of objects such as cutting
behavior for the label ‘scissors’ is referred to as object-oriented behaviors. During
this behavior learning process, the learner builds models of object behavior caused
by the robot’s behavior which can later be utilized to identify behaviors that the
objects afford. B is a process of categorizing the visual feature space based on
the object behavior model acquired in process A. This process enables the learner
to identify the behavior for the object in view without physical interaction. As
for visual features, we adopt photometric features such as color histograms or
edge histograms. Although visual categories related to object-oriented behavior are
acquired by A and B, the learner still needs to associate labels to the object-oriented
behaviors in order to communicate about them. This association is not an easy task
since categories of behaviors are gradually obtained and not all labels are related to
those categories. In order to solve the association task, the learner categorizes the
visual feature space based on the labels (C) and learns the association by matching
the categories of behaviors and of labels (D).

2.2. System overview

The overview of our system for lexicon acquisition based on behavior learning is
shown in Fig. 2. Inputs to the system are classified into three types, i.e., photo-
metric features for object identification, state variables for controlling the objects
(such as current position and orientation of objects) and labels given by the care-
giver. The idea to separate visual information of objects into two main categories,
i.e., photometric features and state variables, comes from the study by Milner and
Goodale [16], which indicates that visual information for identification and con-
trol are handled by different processes in the human brain. Similar separation of
visual information is also adopted in the system of Fitzpatrick and Metta [13] to
learn the affordance of objects. As previously mentioned, process A is realized by
a multi-module reinforcement learning system taking state variables as input. Each
module of the multi-module reinforcement learning system corresponds to a par-
ticular object-oriented behavior. As A performs, B easily performs by categorizing
the photometric feature space according to the identification of object-oriented be-
haviors. On the other hand, the system also categorizes the photometric feature
space according to the labels given by the caregiver (C). This means that two dif-
ferent categorizations are performed on the same photometric feature space. Adap-
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Figure 2. Sketch of the system for lexicon acquirition based on behavior learning.

tive networks are adopted for these categorizations. Finally, process D is realized
by learning the correspondence between object-oriented behaviors and labels by a
Hebbian network, connecting a behavior and a label whose category is selected for
same photometric features. Details on each learning system are explained in the
following sections. Although the different learning processes are explained one at a
time, the system is designed to run all the learning processes in parallel. Scheduling
of lexicon acquisition is introduced only for the simplicity of showing the results.

2.3. Learning and identifying object-oriented behaviors

We adopt the multi-module reinforcement learning system shown in Fig. 3 for
learning and identifying object-oriented behaviors. The system consists of multiple
learning modules, each of which consists of a predictor and a planner, and a gate
to select the appropriate module based on reliability representing the accuracy
of the goal-directed state transition prediction by each learning module. In the
current system, one-to-one correspondence between learning modules and object-
oriented behaviors is assumed. The system learns object-oriented behaviors as
state-action mappings and identifies the object-oriented behaviors based on the
reliabilities of the learning modules. If no learning module with sufficient reliability
is found, a new learning module is assigned to learn a new object-oriented behavior.
We chose Q-learning [17] associated with state transition models and reward
prediction models as the reinforcement learning method. The method can acquire
the behaviors with relatively little prior knowledge of the task or the environment.
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Figure 3. Multi-module reinforcement learning system.

Figure 4. Basic model of learner–environment interaction in reinforcement learning.

2.3.1. Behavior learning. In general reinforcement learning, interaction between
the learner and environment is modeled as shown in Fig. 4. In every time step, the
learner obtains a discrete representation of the current state st ∈ S (S is the set
of possible states) and selects an action at ∈ A(st ) (A(st ) is the set of possible
actions at state st ). Then the next state st+1 ∈ S and reward rt+1 ∈ R are
determined, depending only on the state and action selected by the learner. The
task of reinforcement learning is to choose a policy a = f (s) which maximizes the
decaying sum of reward:

∞∑

n=0

γ nrt+n, (1)

where γ is the decay factor (0 < γ < 1).
The predictor in each learning module builds two models of the environment

through the interactions with the objects. One is a state transition model, which
is a set of probabilities of all state transitions:

P̂a
ss′ = Pr{st+1 = s ′|st = s, at = a}. (2)

Another is a reward prediction model, which is a set of expected reward values for
all state-action sets:

R̂a
s =

∑

s′
E{rt+1|st = s, at = a}. (3)
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As the state transition model and reward prediction model are built, the planner for
each learning module calculates the action value Q(s, a) (a set of expected decaying
reward sums for every state-action set) by simulating the learning process offline.
The offline learning process takes place at the end of each trial of interaction with the
environment. All the state transition data from a continuing interaction are assumed
to come from the same object:

Q(s, a) =
∑

s′
P̂a

ss′
(
R̂a

s + γ max
a′ Q(s ′, a′)

)
. (4)

When Q(s, a) converges, the rational policy is given as:

f (s) = arg max
a∈A(s)

Q(s, a). (5)

In order to collect data for building the models, the learner selects actions for the
objects by first specifying the best-matching learning module and then selecting the
action within the learning module. A learning module is usually selected based
on its reliability (defined in the next section). However, in the initial phase of
interaction where no state transition is observed, the learner selects the learning
module corresponding to the best-matching object-oriented behavior for the given
photometric feature of the object. The adaptive network is used for this selection and
discussed in detail in Section 2.4. Once a learning module is selected, the learner
selects the action based on the ε-greedy method. For more effective identification,
the learner can choose the action which gives the most different state value transition
among the learning modules.

2.3.2. Behavior identification. We calculated the reliability for each learning
module as:

rel = DQthreshold − �Q(st , at ), (6)

in which �Q(st , at ) is the action value error defined as:

�Q(st , at ) = ∣∣rt+1 + γ max
at+1

Q(st+1, at+1) − Q(st , at )
∣∣. (7)

This means that when the learner encounters an object, it identifies the object-
oriented behavior by choosing the learning module with the most accurate predic-
tion of the state value transition. We adopted this criterion instead of common
state transition predictions in order to put more importance on task-oriented state
changes. When action value errors of all existing behavior modules exceed a prede-
fined threshold DQthreshold, all reliabilities have negative values and a new learning
module is assigned to learn the new behavior. The threshold was balanced to avoid
redundant computation, but to acquire enough categories for object handling.
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2.4. Categorization of photometric feature space

We adopted adaptive networks, modified radial basis function neural networks, for
the categorization of the photometric feature space. The method is more tolerant
to noise than simple nearest-neighbor methods and considered as a model for
categorical perception of biological systems [18]. The method is also adopted by
Steels and Belpaeme [19] to acquire categories for words.

An adaptive network consists of a set of networks, each of which corresponds
to a single category. The network of each category outputs a scalar value y(x)

for an input of photometric feature vector x and the category with the largest
network output is selected as the best-matching category. Each category network
consists of locally reactive units whose responses are greatest at a central value m
and decay exponentially around this central value. The response of local unit j

is:

zj (x) = e− 1
2 (

d(x,mj )

σ
)2
, (8)

where d(x, mj ) is the distance between central value mj and input vector x. Con-
stant values are set for variance σ . The output of the network for category k

is:

yk(x) =
J∑

j=1

wkjzj (x), (9)

where J is the number of locally reactive units. A schematic of the calculation of
the output for category networks is shown in Fig. 5.

The system categorizes the feature space by modifying the network weights and
adding new local units. When a training data set (photometric features with a label

Figure 5. Schematic of the adaptive network for behavior or label. The category with the largest
network output is selected.
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or photometric features with a behavior) is given and categorization is successful,
the network weight of the matching category k is increased as:

wkj ←− wkj + βzj (x). (10)

If the categorization is not successful, a new local unit with a central value of the
unsuccessfully categorized input is assigned and the weight to the correct category is
set to a predefined value of w0 (other weights are set to 0). When new categories are
added, such as the case when new behavior modules are assigned or new labels are
taught, a new category network is assigned with local units capable of classifying
inputs for those new categories. The weights of all local units of all categories are
decreased whenever the network is modified:

wkj ←− αwkj (for k = 1, . . . , K, and j = 1, . . . , J ). (11)

This process enables the system to forget unused categories and keep adapted to
changes of the environment. β ∈ [0, 1] is a learning rate and α ∈ [0, 1] is a decay
factor.

2.5. Learning the relation between object-oriented behaviors and labels

We adopt a Hebbian network for learning the relation between object-oriented
behaviors and labels. The Hebbian network connects the nodes of object-oriented
behaviors and the nodes of labels, and modifies the weight of the network so that
corresponding nodes are strongly connected. Whenever the learner captures an
object, the learner extracts the photometric features of the object and selects the
best-matching behavior and the label utilizing both adaptive networks. In the case
where behavior m and label n are selected, the weight between those two nodes
Wmn is increased as:

Wmn ←− Wmn + δinc, (12)

and weights of other connections to node m or n are decreased with δinh to disregard
labels unrelated to object-oriented behaviors:

Wst ←− Wst − δinh (s = m or t = n), (13)

δinc and δdec have positive values smaller than 1. When new nodes are added, the
weights are initialized to 0s.

2.6. Label association policy

The process of selecting labels for objects in view is shown in the following. The
process includes label selection based on the similarity of behaviors that the object
affords.

(i) Extract photometric features of objects.

(ii.A) Select the best-matching behavior utilizing the adaptive network for behav-
iors.
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Figure 6. Label guessing process.

(ii.B) Select the best-matching label utilizing the adaptive network for labels.

(iii) Compare the outputs of the selected behavior category network and the
selected label category network.

(iv) If the output of the behavior category network is larger than that of the label
category network and there exists a label unit in the Hebbian network which
is connected to the unit of the selected behavior with a weight higher than a
predefined value Wlimit, go to step (v). Else, go to step (vi).

(v) Output the label with the strongest connection to the behavior selected in step
(ii.A).

(vi) Output the label selected in step (ii.B).

Figure 6a and 6b shows the information flow for selecting the label in steps (v)
and (vi). The learner outputs labels according to behavior when it knows the
behavior for the object and has acquired the label for it. A learner with a low Wlimit

associates labels more often with behavior categories, whereas a learner with a high
Wlimit is more conservative about association.

3. EXPERIMENTS

3.1. Task

To show the validity of our system, we implemented the system on a mobile robot
(Fig. 7) that learns a lexicon about objects with different rolling preferences. We
used the objects shown in Fig. 8, and gave the labels ‘ball’, ‘box’, ‘cylinder’
and ‘car’. After presenting the objects shown in Fig. 8a–d paired with the labels
corresponding to them, we introduced the new objects shown in Fig. 8e–h without
the corresponding labels. Note that some components of an object category are very
similar to components in other object categories (e.g., the new ball is more similar
to the new cylinder captured from the cap side than to the old ball). Categorizing
a unseen object based only on similarities of visual feature is useless in this case.
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Figure 7. Mobile robot used in the experiment.

Figure 8. Objects used in the experiment.
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However, if the system successfully learned the correspondence between object-
oriented behaviors and labels, it should be able to associate the labels to the new
objects.

3.2. Learner setup

3.2.1. Hardware and environment. The mobile robot utilized in the experiment
is shown in Fig. 7. The robot is equipped with a CCD camera (FireFly2 provided
from Point Grey Reseach) with a fixed view angle (Fig. 7b) and a kicking device
in front with two arms that rotate independently in the horizontal plane (Fig. 7a
and 7c). The robot is able to move in any direction in the horizontal plane by the
use of omni-directional wheels (Fig. 7c). The robot interacted with the objects in a
3 m × 3 m space covered with a green color.

3.2.2. Visual information processing. A 240 (H)×320 (V) size image of objects
was captured by a CCD camera and sent to a laptop PC through an IEEE1394
interface. The object region is extracted assuming that the green color regions
are background regions. The direction of the principal axis is then calculated
from the object region by principal component analysis as shown in Fig. 9a and
utilized as a state variable to run the object rolling behavior. On the other hand, we
adopt YUV color space and the UV color histogram as photometric features. UV
space is quantized into 16 × 16, so the color histogram is a 256-dimensional vector
representing the frequency of quantized colors in the UV space. Figure 9b shows an
example of the UV space histogram. The system uses χ2-divergence as the distance
metric for categorization. The χ2-divergence of two photometric feature vectors a

Figure 9. Color histogram of an object.
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Figure 10. State and action for the task.

and b is calculated as follows:

d(a, b) = χ2(a, b) =
∑

i

(ai − bi)
2

ai + bi

. (14)

3.2.3. Learning system. The state space for the learning modules of the multi-
module reinforcement learning system consists of the direction of the principal axis
of the object θ ∈ [−90, 90] as shown in Fig. 10a. The state space is quantized into 7
and another state is added to represent a case when the principal axis is uncertain.
The learner is able to choose from three actions (Fig. 10b), i.e., kicking the object
forward, and moving clockwise and anti-clockwise around the object. Finally, a
reward whose value is proportional to the moving distance of the object is given to
the learner.

Parameters for the multi-module reinforcement learning system, adaptive net-
works and Hebbian network are shown in Table 1.

3.3. Experiment on object-oriented behavior learning and identification

The learner acquired the rolling behavior for the objects shown in Fig. 8a–d. The
assignments of new learning modules and changes of reliability for each module
are shown in Fig. 11, where curves with different line types correspond to different
learning modules. The horizontal axis indicates the number of trials of interaction
with the objects. One trial finished when the learner kicked the object 5 times
or when the learner lost the object. This indicates that if the object was to roll,
approximately one successful kick is included in each trial. The learner experienced
the objects in the fixed order of ball, box, cylinder and car. They interacted with
the objects for five trials in the first 20 trials, for three trials in the next 12 trials,
etc., the object was switched after each trial. We introduced the scheduling to the
behavior learning process, since if the learning modules were too immature, they
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Table 1.
Parameters for the learning system

Multi-module reinforcement learning system
decay factor γ 0.3
threshold for action value error DQthreshold 1.0

Adaptive network for behavior
learning rate β 1.0
decay factor α 0.99
initial value of network weight w0 0.5

Adaptive network for label
learning rate β 1.0
decay factor α 0.99
initial value of network weight w0 0.5

Hebbian network
increasing value of weight δinc 0.1
decreasing value of weight δdec 0.1
limit value of weight considered Wlimit 0.0

Figure 11. Action value error of each learning module while learning object-oriented behaviors.
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would give large action value errors, even though they were interacting with the
corresponding objects. Taniguchi and Sawaragi [20] discuss this topic in detail.
As shown in Fig. 11, every time an unfamiliar object was introduced, the action
value error exceeded the predefined limit DQthreshold(s, a) = 1.0 (which makes the
reliability less than 0) and a new learning module was assigned. Figure 11 also
shows that the same learning module is selected for each object. This shows that
the system successfully acquired the set of learning modules that can be utilized to
identify the objects based on object-oriented behaviors.

3.4. Experiments on learning the relation between object-oriented behaviors and
labels

After the learner acquired the object-oriented behaviors and categorized the photo-
metric feature space based on the behaviors, the caregiver taught the labels of the
objects which the learner learned to roll (Fig. 8a–d) in random order. When the
label was given, the system categorized the photometric feature space by assigning
simultaneously given photometric features to the category of the given label. As the
category of the label grew, the relationship between object-oriented behaviors and
labels is learned by modifying the weight of the Hebbian network. Figure 12 shows
the Hebbian network’s weight transition recorded from a real robot experiment in
accordance with the number of times the label was given. We can observe that
the system successfully learned the one-to-one correspondence of object-oriented
behaviors and labels.

3.5. Experiment on label association

After learning the relation between object-oriented behaviors and labels, the learner
was presented with the new objects shown in Fig. 8e–h without the labels. Since
all the object-oriented behaviors of the new objects were known, the learner was
expected to be able to associate the learned labels to the new objects. Figure 13
shows the transition of the success rate in labeling new objects as the learner
interacted with the new objects and identified their object-oriented behaviors. The
horizontal axis shows the number of interaction trials the learner experienced with
the new objects. During this interaction with the new objects, the multi-module
reinforcement learning system continued the behavior learning process to adapt
the learning modules to the new objects. The success rate of labeling shown on
the vertical axis was calculated based on 400 sets of object images and label (100
sets of testing data were prepared for each object) produced in the environment
of the experiment. The success rate of labeling is only about 20% at the start,
which shows that existing methods are helpless for associating labels to new objects
autonomously. As the learner interacted with the new objects, it expanded the
categories of object-oriented behavior to the photometric features of new objects.
Through this growth of the behavior-based category, the learner was able to assign
appropriate labels to new objects following the process discussed in Section 2.6.



1142 S. Takamuku et al.

Figure 12. Weight transition of the Hebbian network.

After about 12 trials of interaction with the new objects, the mean success rate of
labeling for all new objects reached 80%. The success rate of labeling for the new
car and the new box was not as high as the other two objects. This was due to the
fact that the new car had a very similar color to the boxes. We can overcome this
problem by introducing other photometric features such as edge histograms to form
a better space for categorization.

4. DISCUSSION AND CONCLUSIONS

We proposed a lexicon acquisition system which can associate labels to new objects
with very different visual features according to the behavior that can be performed
with the objects. The system was implemented on a robot learning labels about
objects with different rolling preference. The robot acquired the rolling behaviors
for each object, formed photometric categories of those behaviors and successfully
associated the labels to newly introduced objects. An interesting point of our
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Figure 13. Association of labels to new objects.

research is that the acquired lexicon can be interpreted as both nouns and verbs
depending on the context. Our research indicates the possibility that verbs can
be grounded to some behaviors indirectly through features of objects with certain
affordances. For future work, we consider the possibility of symbol grounding by
modifying our system. The reliabilities of the multi-module reinforcement learning
system can be associated to basic symbols for symbol grounding [21, 22] as in
the case of the parametric bias of Sugita and Tani’s system [5]. Compared to
the distributed expression adopted in their approach, local expressions adopted in
our approach are advantageous in the sense that no memory interference occurs.
Most symbol grounding systems developed so far require basic symbols to be
given simultaneously with the corresponding sensorimotor experience. The idea
of indirect association through features of objects with certain affordances may
also be useful for finding correspondences between basic symbols and sensorimotor
concepts.
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