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This paper proposes a learning model that enables a robot to acquire a body image
for parts of its body that are invisible to itself. The model associates spatial perception
based on motor experience and motor image with perception based on the activations
of touch sensors and tactile image, both of which are supported by visual information.

The tactile image can be acquired with the help of the motor image, which is thought
to be the basis for spatial perception, because all spatial perceptions originate in motor
experiences. Based on the proposed model, a robot estimates the invisible hand positions
using the Jacobian between the displacement of the joint angles and the optical flow of

the hand. When the hand touches one of the invisible tactile sensor units on the face,
the robot associates this sensor unit with the estimated hand position. The simulation
results show that the spatial arrangement of tactile sensors is successfully acquired by
the proposed model.

Keywords: Body Image; Sensor Fusion; Learning and Adaptive System

1. Introduction

It is paramount that robots become capable of body representation if they are to
develop further, and there are two standard approaches to represent the relationship
between the robot body and the space around it. One is a model-based approach
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wherein knowledge about the parameters of the links and cameras of a robot is
given in advance. The other is more adaptive in that the robot estimates these
parameters based on its experience in the environment 1 2 3. The latter approach is
closely related to human body representation; recent brain and medical studies have
revealed that biological systems have flexible body representation, so-called body
image. Ramachandran showed that patients suffering from phantom limb pain could
alleviate their pain by observing the visual feedback of the good limb in a mirror
box. He also suggested that the cortical representation of a patient’s body might be
restructured after the loss of a limb 4. Iriki et al. showed that the receptive field of the
bimodal (somatosensory and visual) neurons in the intraparietal cortex is extended
when monkeys use tools to obtain food 5. Moreover, these body images are thought
to represent the relationship between an animal’s own body and the external world.
This may suggest that body image is the spatio-temporally integrated image of
various modalities, such as auditory and visual perceptions and somatic (including
tactile) sensations as well.

In developmental cognitive science, it has not yet been revealed how and when
humans acquire their body images. Human newborns can imitate gestures such as
mouth-opening and tongue-protrusion within a few hours after their birth 6. This
may suggest that a newborn can be aware of the parts of the face of their parents
that correspond to its own face. This has lead to discussion on how this is possible
at such an early stage of development.

Meltzoff and Moore proposed the active intermodal mapping (AIM) model to
explain this form of early imitation 7. In their model, organ-identification, through
which newborns can associate the sensory perception of invisible parts with the fea-
tures of parts of others in visual information, is a prerequisite. This model suggests
that newborns are able to compare gestures and produce facial expressions regard-
less of differences in modality. However, recent studies reveal the possibility of fetus
learning in the womb 8. Recent sonographic observations have revealed that the fe-
tus’ eyes open after about 26 weeks of gestation and that the fetus often touches its
face with its hands during embryonic weeks 24 and 27 16. Moreover, it is reported
that visual stimulation from outside the maternal body can activate the fetal brain
9. Thus, it does not seem unreasonable to suppose that infants acquire a primitive
body image through experiences in womb.

Cognitive developmental robotics has been proposed aiming at discovering a
new way of understanding ourselves, especially focusing on the human cognitive
developmental process by building a robot that can reproduce the process. In case
of body representation, a robot should adaptively acquire the relationship between
its own body and the external world. Nabeshima et al. 10 proposed a model that
explains the behavior of the neuron observed in the experiment of Iriki et al. 5.
In their model, a robot detects the synchronization of the visuo-tactile sensations
based on an associative memory module and acquires a body image. Yoshikawa et
al. 11 proposed a model in which a robot develops an association among visual,
tactile, and somatic sensations based on Hebbian learning, while touching its own



August 3, 2007 4:33 WSPC/INSTRUCTION FILE fuke˙ijhr07

Spatial Configuration of Body Surface based on Motor Image 3

body with its hand. However, in these studies, body parts to be integrated are
limited to visible ones, and their methods cannot be applied to the acquisition of
body images of invisible parts, such as the face or the back.

In order to represent the invisible body parts, spatial perception that represents
the relationship between the body and the external world appears to be important
because the locations of invisible parts might be predicted from experiences in the
visible area. Studies in brain science suggest that the hippocampus is involved in
coding a specific location in space by integrating motion information such as optical
flow to localize its own position in space 12. In this paper, we apply this to the issue
of representing the invisible body parts of the robot. We refer to spatial perception
based on motor experience as the motor image and propose a learning method to
acquire a body image of an invisible face part based on the motor image. An invisible
hand position is estimated by integrating the Jacobian of the hand displacement
and the resultant optical flow. Thus, a robot can associate the tactile sensor unit
with the visual information through touching experiences using its own hand.

The remainder of the present paper is organized as follows. First, an overview
of the proposed system is presented, and the details of the system and the learning
algorithm are given. Then, the simulation results are presented. Finally, a discussion
and conclusions are given.

2. Estimation of the invisible hand position based on motor image

A body image is thought to be an integration of spatial perceptions in terms of
different modalities. We define ”X image” as the spatial perception based on modal
X. We assume that a body image consists of the principal two images: tactile and
motor images (Fig. 1). A motor image is the spatial perception based on motor
experience. An optical flow of the hand is the result of the motor commands, and
therefore the flow with motor command is one example of the motor image. A tac-
tile image is thought to be the sensation of spatial perception when some tactile
sensors are touched. Thus, the visual information is utilized to construct motor
and tactile images. These images are not acquired at the same time in the devel-
opmental process. Rather, the maturation of one image can assist the development
of the other. The motor image is thought to be the most important and precedent
spatial perception, because it seems that all spatial perceptions originate in motor
experiences. Here, we show that the tactile image can be acquired with the help of
the motor image (arrow in Fig. 1).

The motor image is more concretely defined as the mapping between the pro-
prioceptive space (joint angles) and vision space, and the tactile image is defined as
the mapping between the tactile space and vision space. A robot can acquire such
mapping by touching its own body parts with its hand and associating the coordi-
nates of the touched part in the camera image with the identification of activated
tactile sensor units and the joint angles. However, this approach cannot be used for
touched parts that are not visible, such as the face and back. In these cases, it is
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Fig. 1. A body image comprising tactile and motor images supported by visual information

necessary to construct the integrated spatial perception before the association so
as to estimate the invisible hand positions. The spatial perception based on motor
information (motor image) is inevitable to construct the body image. We suppose
that even an infant who has not yet experienced locomotion has achieved primitive
spatial perception by associating its hand motion with the resultant information. It
has already been shown that the hand can be used as a probe to explore the world
5. Thus, for the robot to explore its invisible parts with its hand, it is important to
associate the invisible hand positions with the visible ones. We propose a learning
process: first, the displacement of the hand position related to the motion is learned
(spatial learning phase (Fig. 2 (a))), then the invisible tactile sensor units are asso-
ciated with the spatial perception with the hand probe, based on the learned spatial
perception of the hand (mapping phase (Fig. 2 (b))).

In the first phase (Fig. 2 (a)), while a robot moves its hand in front of its face,
it learns the Jacobian, f , the relationship between the displacement of the hand
position in the camera image, ∆rm, and the displacement of the joint angles, ∆θm,

∆rm = f(∆θm). (1)

In this phase, the body image mapping is not learned, because the tactile informa-
tion is not available.

In the second phase (Fig. 2 (b)), the robot touches its face with its hand. In
this phase, visual information is not available, and the imaginary hand position, r̂,
is estimated by the learned Jacobian and its integration,

r̂ = r0 +
∫

f(∆θ)dt. (2)

Although the accurate Jacobian cannot be obtained directly through the experience,
we assumed that the learned Jacobian is a reasonable approximation of the Jacobian
in invisible space if the joint angles are similar to each other. In the second phase
(Fig. 2 (b)), based on the estimated hand position in the visible area, a robot can
associate the hand position with the touched sensor units and the joint angles.
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Fig. 2. The proposed model to learn mapping between invisible parts and tactile sensation: (a)
In the spatial learning phase, a robot constructs a motor image, which is the association between

the vision space and proprioceptive space, through the experience of observing its own hand
moving in front of the face. At the same time, the Jacobian, which is the relationship between
the displacement of the joint angles of the arm and the resultant optic flow of the hand, is also
learned. (b)In the mapping phase, the robot constructs a tactile image, which is the association

between the vision space and the tactile space, while touching its face. The invisible position of
the face is estimated by integrating the virtual displacement that is calculated by the Jacobian
learned in the spatial learning phase.

3. Acquisition of facial body image

The preconditions for a robot to acquire a body image of its face are as follows,

• The robot can detect the hand position in its camera coordinate system
and know the posture of the arm by its joint angles.

• The tactile sensors are arranged in a grid pattern, and the robot can detect
the activated tactile sensor units.

• The robot does not know in advance the relationships among the vision,
proprioceptive, and tactile spaces.

3.1. vision, tactile, and proprioceptive spaces

3.1.1. proprioceptive space

The joint angles of an arm constitute the proprioceptive space.

θ = (θ1, θ2, ..., θn), (3)

where n is the number of joint angles. The data during the face touching are collected
and a self organizing map (SOM) is constructed before the mapping phase, as shown
in Fig. 3. Thus, a unit of the proprioceptive space is a representative vector of this
SOM,

Θi = (θi
1, θ

i
2, ..., θ

i
n). (4)
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Fig. 3. A self organizing map of the joint angles; 8x8 figures show the representative vectors of the
self organizing map as the posture of the arm with the face (other body parts such as the other
arm, legs, and the body are not shown). The joint angles are collected as training data for the
SOM while the robot touches its face randomly.

3.1.2. tactile space

The tactile sensor units are arranged in a grid pattern on the robot face. Thus, the
unit of the tactile space is each tactile sensor unit,

Ti = (Txi , Tyi) (5)

where Txi and Tyi are the coordinates on the face. We arrange the units on the
tactile space in the same way as on the face (in a grid pattern).

3.1.3. vision space

Unlike the other two modalities, the representative unit is not prepared for vision
space. Instead, the continuous value is used to represent the visual information. The
visual information is represented as the position of the robot hand in the camera
coordinate system,

r = (rx, ry). (6)

3.2. Learning Jacobian and Estimation of Invisible Hand Position

by Integration

The Jacobian transformation from the displacement of joint angles to that of the
coordinates of the hand, f , is represented by a neural network. The relationship
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is learned by the back-propagation algorithm during the probe hand motion just
in front of the face (Fig. 2 (a)). In the mapping phase, the robot touches its face
(invisible parts), and the position of the probe hand is estimated by the following
equation. When a robot touches its face during the time period between t0 and t1,
the estimated hand position, r̂, is calculated as

r̂ = F (θt0) +
∫ t1

t0

f(∆θ)dt, (7)

where F is the mapping from the proprioceptive space to the vision space, and
∆θ is the displacement of the joint angles (∆θ = θt1 − θt0). Although the different
postures have different Jacobian transformations, in general, here we postulate that
the posture difference has little effect on the Jacobian, because the joint angles
of the arm during the hand motion in front of the face are close to those during
touching the face. The convergence of the learning is evaluated by the total error in
teacher data, and the neural network could always approximate the training data
well, starting with different random connection weights.

3.3. Learning the mapping from the tactile space to the vision

space

In the simplest model, the mapping between the tactile space and the vision space
can be described as the simple Hebbian learning of the connection weight:

∆wik = αAT
i Ar

k, (8)

where α is the learning rate, and AT
i and Ar

k are the activation levels of the i-th
unit of the tactile sensor and the k-th unit of the vision sensor

AT
i =

{
1 the i-th sensor unit is touched

0 else
, (9)

Ar
k =


1 the hand is detected at the position in the camera image

that corresponds to the k-th unit

0 else

. (10)

Supposing that the units near to the touched sensor unit are also activated, the
learning equation becomes,

∆wik = α exp(−‖Ti − Tc‖/γ)Ar
k, (11)

where Tc is the coordinate of the touched tactile sensor unit.
Since the vision does not have exact unit representation, the mapping from the

tactile space to the vision space is modelled as the learning of the reference vector
of the unit in tactile space,

rT
i = (xT

i , yT
i ). (12)
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Instead of using the update function of the above mentioned connection weight, this
reference vector is updated in the same way as the self organizing map algorithm
13. When the current estimated hand position is r̂, the mapping for the i-th unit
on the tactile space is updated depending on the distance from the c-th unit on the
tactile space,

∆rT
i = αT (t) exp(−‖Ti − Tc‖/γ)(r̂ − rT

i )), (13)

where αT (t) is a learning rate that decays as the learning goes and Ti and Tc are
the coordinates of the i-th and c-th units on the tactile space, respectively.

3.4. Learning the mapping from the proprioceptive space to the

vision space

In the same way as the mapping from the tactile space to the vision space, the
mapping from the proprioceptive space to the vision space is defined as,

rΘ
i = (xΘ

i , yΘ
i ). (14)

The update algorithm is also done in the same manner as in the mapping rT . When
the current estimated hand position is r̂, the mapping for the i-th unit on the
proprioceptive space is updated depending on the distance from the c-th unit on
the proprioceptive space,

∆rΘ
i = αΘ(t) exp(−‖ui − uc‖/γ)(r̂ − rΘ

i ), (15)

where αΘ(t) is a learning rate that decays as the learning goes and ui and uc are
the coordinates of the i-th and c-th units on the proprioceptive space, respectively.

4. Experimental result

To validate the proposed method, computer simulations are conducted in a dynam-
ics simulator. The robot model used in this experiment and its specification are
shown in Fig. 4. In this experiment, five joint angles of the left arm, which are col-
ored black in Fig. 4 constitute the proprioceptive space. The robot has 21×21 tactile
sensor units arranged in a grid array on its face as shown in Fig. 5. The sensors
that belong to the eye, nose, and mouth, can be differentiated by kind of marks for
the reader’s convenience, but there is no difference among all tactile sensor units.
When the face is touched with hand, the nearest sensor unit is most activated. In
addition, the neighbor sensor units are activated depending on the distance on the
tactile space,

I(i) = exp(−(Ti − Tc)2/γ)) (16)

Here, γ is a scaling factor. We apply a Gaussian function to simulate the face
touched by a human hand that is not restricted to one point but a regional area. This
property of activated levels of tactile sensors are used in learning of the mapping
as mentioned in section 3.
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Fig. 4. The robot model and its specifications used in the experiments. The robot has five degrees
of freedom in each arm and seven degrees of freedom in each leg, and one freedom in the neck.
In this experiment, the robot touches its face with the left hand. Five joint angles of the left arm
(colored black) constitute the proprioceptive space.

Fig. 5. The close-up figure of the face of the robot. It uses the hand as a probe while touching its
own face. There are 21 × 21 tactile sensor units on the surface of the face.

In this simulation, since we assume a monocular vision system (the right eye),
the visual target is projected on the screen just in front of the face. Fig. 6 shows
the coordinate system when the screen is z = hz and the origin of this coordinate
system is the center of the right eye. The position of the hand in space is,

h
′
= (h

′

x, h
′

y, h
′

z). (17)
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Fig. 6. The coordinate system for the vision space; The visual targets are projected on the virtual

screen z = hz . (h′
x, h′

y , h′
z) is the position in the space and (hx, hy , hz) is the one on the screen.

The projected position of the hand is given by;

hy =
hz × h′

y

h′
z

, (18)

hx =
hz × h′

x

h′
z

. (19)

4.1. Estimation of the hand position

In the first experiment, the estimation of the hand position is evaluated. As ex-
plained earlier, the Jacobian function, f , that associates the displacement of the
joint angles and that of the hand position in the camera coordinate system is learned
by a neural network. This neural network is trained by the back-propagation method
14 with the data collected while the robot moves the probe hand in front of its face
as shown in Fig. 7. In this case, the robot draws a circle with the hand (the end
effector of the arm) in both clockwise and anticlockwise directions during the train-
ing phase. The external force to follow such a desired trajectory is applied to the
hand link. The other links move passively. In this simulation, the parameters are
set as shown in Table. 1. After the training phase, the velocity estimated by the
Jacobian and the actual velocity are compared while the robot moves its hand in
the following sequence of positions: mouth, nose, right eye, left eye and nose. Figs.
8 (a) and (b) are the velocities of the hand along with x and y axes in the camera
coordinate system shown in Fig. 6, respectively. In addition, in order to find out
whether this model can be applied to the real robot, the random torque is added
to the hand in each step to simulate the noise using a normal distribution with
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Fig. 7. The robot learns the Jacobian during the hand motion in front of its face; The square in
front of its face indicates the virtual screen shown in Fig.6

the mean and variance shown in Table. 1. They are added both in training and
estimating phases. Therefore, the learning steps increase from 200 to 500. Figs. 8
(c) and (d) are the the velocities of the hand along x and y axes when the noises of
the joint angles are added.

Fig. 9 shows the actual and estimated trajectories of the hand when the hand
moves in the same manner as shown in Fig. 8. Fig. 9 (a) shows the result without
noises and (b) with noises. For comparison, the initial position for integration of
the velocity is set at the position of the mouth. The results show that the Jacobian
trained with the visible data estimates the hand position well, because the relative
positions of the tactile sensors seem fixed although the long-time integral may accu-
mulate errors. In other words, these results imply the possibility that the robot can
use the Jacobian to recognize the topological relationships among the facial organs
such as the eyes, the nose and the mouth.

4.2. Acquiring the facial image of tactile sensors

Based on the learned Jacobian, the mapping between vision and proprioceptive
spaces and the mapping between vision and tactile spaces are associated. While
the robot touches a random positions on its face with its hand, the mappings are
updated with the algorithm explained in 3.4. The Jacobian trained with the data of
the arm with noises is used to estimate the displacement of the hand position from
the right eye. Since there is a possibility that the error of the estimated position
increases because of the long-time integral, the integral is reset each time the hand
stops at the right eye position. The initial estimated position on the camera coordi-
nate system of tactile sensor units are random. In order to simulate the real robot
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Fig. 8. The actual and estimated velocities of the hand in each direction; The black curve is a

actual velocity and grey one is a estimated velocity using the learned Jacobian and joint angles
while touching its own face. (a) and (b) are the results without noise and (c) and (d) are the ones
with noise, respectively.

experiments where tactile sensors are sometimes inactivated even though the corre-
sponding area are touched, the tactile sensors output no signal with the probability
of 20% when the sensor units are actually touched.

The learning time is 800 [sec] in simulation time and the mapping is updated
every 0.1 [sec], thus the total number of the learning steps is 8000. Fig. 10 shows
the estimated coordinates of the tactile sensors in visual space. The x and y axes
in this figure are the same ones in the camera coordinate system shown in Fig. 6.
The same units are colored in red, green, yellow, and blue to indicate the positions
of sensor units corresponding to the left and right eyes, the mouth, and the nose,
respectively, purely for the reader’s convenience. As the learning steps proceeds, the
relative positions between sensor units gradually become plausible.
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Fig. 9. The actual and estimated velocities of the hand; (a) is the result without noise and (b) is
the one with noise

To show the validity of the methods, we iterated the experiments 10 times with
different initial positions of the tactile sensors and measured the topological error
as shown in Fig. 11. Topological error refers to the number of the sensor units
whose positions on the camera coordinate system are relatively incorrect to the
neighbors (xT

i > xT
i+1 or yT

i > yT
i+1) assuming that the correct positions are aligned

with the grid pattern. In Fig. 11, the average value with the standard deviation
is shown. The error decrease as the learning steps proceed although the relative
position seem distorted partially in Fig. 10. It could be argued that the reason why
the error remains is that the tactile sensors that are located on the edges of the face
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(a) 0 steps (b) 1200 steps

(c) 2400 steps (d) 3600 steps

(e) 4800 steps (f) 7200 steps

Fig. 10. Tactile sensor units mapped on the imaginary visual space (2D-plots); It is the camera
coordinates system shown in Fig. 6. The initial positions of the sensors are random.
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scaling factor γ in formula (16) 40

screen position hz in the camera coordinate system in Fig. 6 0.04[m]

learning rate : back-propagation (without noise) 0.2
learning steps : back-propagation (without noise) 200
number of hidden layer : back-propagation (without noise) 10
learning rate : back-propagation (with noise) 0.2
learning steps : back-propagation (with noise) 500
number of hidden layer : back-propagation (with noise) 10

mean value of the normal distribution of noise 0.0
variance of the normal distribution of noise 0.01

Table 1. Parameters used in this experiment
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Fig. 11. The topological error during the learning shows that the average with the standard
deviation error decreases as the learning steps proceed.

and rarely touched, have not been updated well.

5. Discussion

As well as the acquisition of body image, the proposed model is related to the early
imitation of infants. As mentioned in Section 1, the AIM model is thought to be
one of the representative models for early facial imitation of infants. However, while
organ identification is fundamental to the AIM model, it has not yet been clarified
how organ identification fits into in the developmental process, or how and when
infants acquire this capability. Using a robot, Breazeal et al. proposed a model of
facial imitation based on the AIM model 15. In this model, in order to acquire the
organ identification ability, the robot learns the relationship between the tracking
data of the features of the face of another robot and the joints of its own face while
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imitating another robot. However, it remains unclear how infants understand that
their gestures are the same as those of the person being imitated.

Recent sonographic observations have revealed that the fetus often touches its
face with its hands during embryonic weeks 24 and 27 16. It is thought that the
proposed model can allow a robot to acquire the organ identification ability. As-
suming that an infant associates its arm movements with its tactile experiences
in the womb, it seems reasonable to hypothesize that the infant has developed a
topological relationship among his/her own body parts. As such, after birth, the
infant might be able to associate the topological relationships of his/her own body
parts with those of their parents. It has been reported that one-month-old infants
show a preference for viewing the full face of their mother, but no preference for
her profile 17. This fact implies that younger infants are not aware of their mothers
from the side view of the faces. This means that they have not associated the full
faces with the side faces yet, and in this sense it can be said that their recognition
remains a planar one.

However, there still remain a number of obstacles to realizing organ identifica-
tion. One is how to find the unit of organ. For visual information, it is known that
infants have a preference for patterns like faces 18. However, how do they feel for
tactile sensing? One possibility is that the organs have high sensitivity and thus
can be easily separated from other tactile sensors. The other possibility is that
the irregularities on the facial surface, such as nose, mouth, and eyes, can be eas-
ily sensed with tactile sensation of the hand. We are now constructing a model
with more accurate facial structure and tactile sensation for investigating these
two possibilities. Another challenge for realizing organ identification is making an
appropriate evaluation function to recognize the topographic relationship between
organs. The proposed method achieves mapping between the different modalities,
enabling a robot to compare different kinds of modal signals. However, this mapping
is not so accurate and thus will need geometrical evaluation such as the topological
relationship between organs rather than exact pattern matching.

In the present paper, we proposed a learning model to acquire body images for
invisible body parts. The invisible hand position is estimated based on the Jacobian
between the displacement of the joint angles and the optical flow of the hand. A
general idea is to use the Jacobian and its integration for estimating the invisible
space. For future work, we are planning to extend the method to acquire the body
image of the back.
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