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Abstract

This paper presents a learning model that
enables a robot to acquire body representa-
tion for its face which is invisible to itself while
the robot touches it. Two processes are si-
multaneously carried out: self-organization of
tactile sensor unit configuration though the
visuo-tactile sensations by self-induced motor
behaviors, and facial part detection based on
the discontinuity of sensor values.

1. Introduction

Robots are expected to learn the flexible body rep-
resentation in order to adapt themselves to changes
in environment and tasks such as tool use and im-
itation of others’ behaviors. In cognitive devel-
opmental robotics, the integration of multi modal
(visual, tactile and somatic) sensations through
double touch experience have been investigated
(Nabeshima et al., 2006), (Yoshikawa et al., 2002).
However, the existing work lacks two important as-
pects for face representation. First, they cannot cope
with invisible part representation. To enable it, a
robot should have an ability to apply the visual ex-
periences in the visible area to the invisible ones.
Second, they have not categorized facial parts since
they supposed smooth flat body surface.

In this paper, we propose a model that enables a
robot to acquire a body representation for its face
invisible to itself while touching it. Two processes
are simultaneously carried out: self-organization of
tactile sensor unit configuration though the visuo-
tactile sensations by self-induced motor behaviors,
and facial part detection based on the discontinuity
in sensations.

2. The proposed model

(Yoshikawa et al., 2002) proposed a method in which
a robot can acquire two mappings between the pro-
prioceptive space (joint angles) and vision space, and
between the tactile space and vision space by touch-
ing its own body parts with its hand and associating

the coordinates of the touched part in the camera
image with the activated tactile sensor units and the
joint angles. However, this method cannot be ap-
plied to touched parts that are not visible such as
the face and back. In such a case, it is necessary
to construct the integrated spatial perception before
the association so as to estimate the invisible hand
positions. The spatial perception based on motor
information is inevitable to construct the body rep-
resentation. In fact, it is important to associate the
invisible hand positions with the visible ones for the
robot to explore its invisible parts with its hand.

(a) the front view

Robot

Hand

The ID of the nearest cell = Sh(t)

36 cells

Face

(b) the robot hand

Figure 1: A new model with the convexties on the surface

of the face and a hand of which surface is divided into 36

cells. The ID of the cell that is the nearest to the surface

of the face at time can be detected.

In this method, the robot model that is shown in
Figure 1 is used. First, Jacobian transformation f
from the displacement of joint angles to that of the
coordinates is learned by the back-propagation al-
gorithm during the hand motion in the visual field.
Then, the robot touches its own face (invisible parts)
and estimates the position of the hand r̂ by using
learned function f and the displacement of joint an-
gles at that time.

As shown in Figure 2, the robot has vision, tac-
tile, and proprioceptive spaces in advance. Each cell
of the tactile space is the actual tactile sensor unit
on the surface of the face. In the next phase, the
mapping is modelled as the learning of the reference
vector of the unit in the tactile space,

rT
i = (xT

i , yT
i ). (1)



Figure 2: The idea of the proposed model

This reference vector rT
i of the i-th unit is updated

in the same way as the self organizing map algorithm
(Kohonen, 1995). When the current estimated hand
position is r̂, the mapping for the i-th unit on the
tactile space is updated depending on the distance
from the c-th unit on the tactile space,

∆rT
i = αT (t) exp(−∥T i − T c∥/γ)(r̂ − rT

i )), (2)

where αT (t) is a learning rate that decays based on
the exponential function, exp(−(count)/p). Here,
”count” means the learning step and p is a constant.
In addition, T i and T c are the coordinates of the i-th
and the c-th units in the tactile space, respectively.
(À in Figure 2).

Furthermore, in the mapping phase, the robot can
discriminate the characteristic tactile sensor units in
parallel. We assume that the robot can discriminate
some tactile units from others by detecting the dis-
continuity of the sensory information; the detection
of the change of the contact cell of the hand by hit-
ting the convexity, the sudden obstruction by hand
in right or left eye, and the feeling of the mouth
movement.

When certain discontinuity is detected at the i-th
unit in the type of the sensor k, the discontinuity
level u is updated by the following equation,

∆uk
i (t) = αp exp(−∥T i − T cp∥/γp), (3)

where cp is the sensor unit whose mapped position
is the nearest to the estimated hand position r̂. αp

is a constant in this experiment. The discriminated
units can be categorized into the clusters based on
the type of the sensory data. (Á in Figure 2).

3. Experimental results

The Jacobian function, f , that associates the dis-
placement of the joint angles and that of the hand

position in the camera coordinate system is learned
by a neural network while the robot draws a cir-
cle with the hand (the end effector of the arm) in
both clockwise and anticlockwise directions during
the training phase. The learning rate is 0.2 and the
number of learning steps is 200.

Then, during the mapping phase, the robot
touches a random positions on its face with its hand,
the vision and the tactile spaces are associated and
the discontinuity level are updated at the same time.
The learning result of the spatial configuration of the
tactile sensors in the visual space is shown in Figure
3. As stated above, there is no difference among all
sensor units at the beginning. In addition, the ini-
tial mapping positions of sensor units are random
and the total number of the learning steps is 5000.
In Figure 3, the discontinuity level of the i-th unit is
expressed by a color of each unit. The result shows
that activation of tactile units on facial parts turns
up relative to the other units as learning proceeds
by focusing on the change of multi-modal sensor val-
ues. Moreover, the hand movement of hitting the
convexities seemed to have little effect to acquire the
relative relationship among the units while touching
its face.
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Figure 3: The acquired face representation
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