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Abstract— Due to differences in body structure between robots
and humans, it is a formidable task for robots to show behaviors
that correspond to human behaviors. As a simple case of this
correspondence problem, this paper presents a robot that learns to
vocalize vowels through interaction with its caregiver. Inspired by
the findings in developmental psychology, we focus on the role of
maternal imitation (i.e., imitation of a robot voice by a caregiver),
which could play a role in guiding the correspondence of sounds.
Furthermore, we suppose that it causesunconscious anchoringin
which the imitated voice by the caregiver is approaching to one of
his/her own vowels without his/her intension, and thereby works for
guiding robot’s utterances to be more vowel-like. We propose a method
for vowel learning with an imitative caregiver under the assumption
that the robot knows the desired categories of caregiver’s vowels and
the rough estimate of mapping between the region of sounds that the
caregiver can generate and the region that the robot can generate.
Through experiments with a Japanese imitative caregiver, we show
that a robot succeeds in acquiring more vowel-like utterances than
would be possible without such a caregiver, even when the robot is
provided different mapping functions.

I. I NTRODUCTION

It has been suggested that humans tend to anthropomor-
phize objects [1], and such a tendency may be amplified for
a humanoid robot because of the similarity in appearance
with humans facilitates the identification of correspondences
between human and robot. Therefore, in case of com-
munication, humanoid robots are expected to communi-
cate with humans in a natural ’human’ manner. However,
determination of methods that allow humanoid robots to
exhibit behaviors that correspond to human behaviors is
a formidable task since the body structure of a robot is
different from that of a human.

On the other hand, human infants seem to successfully
solve a similar problem in the language acquisition process
because infants cannot perfectly regenerate the caregiver’s
voices due to sensorimotor immaturities, i.e., differences
in body structure. During the language acquisition process,
imitation seems to have a very important role, regardless
of the body difference. From the viewpoint of cognitive
developmental robotics [2], the study of imitation between
a human and a robot is expected not only to contribute to
studies on understanding the infant cognitive development
process but also to provide the design theory of robot
behaviors based on these studies.

Learning to vocalize vowels seems like one of the sim-
plest tasks in imitation between dissimilar bodies because an
imitator can focus only on the static features in the sound
waves to be generated. Learning to vocalize vowels also
seems to be the first step in infant language acquisition,
which begins at two or three months of age. Previous studies
have elegantly demonstrated that a population of computer-
simulated agents with a vocal tract and cochlea could self-
organize shared vowels through imitating each other [3],

[4]. However, these studies focused on situations in which
all agents can generate sounds in the same region of the
acoustic feature space. In other words, they did not consider
imitation between dissimilar bodies, which is addressed in
this paper.

Using a robot that can generate vowels with an artificial
vocal band and vocal tract (e.g. [5], [6]) is one approach
to directly attack the problem of imitation between dis-
similar bodies. Using such a vocal robot, Yoshikawa et al.
[7] proposed a mother-infant interaction model for infant
vowel acquisition based on observations in developmental
psychology. Inspired by the findings that maternal imitation
effectively reinforces infant vocalization [8] and that its
speech-like cooing tends to invoke utterances by its mother
[9], they suggested that maternal imitation (i.e., imitation
of the robot’s utterances by the caregiver) using adult
phonemes plays an important role in phoneme acquisition,
namely instructing the matching between its articulations
and the corresponding caregiver’s utterances. In their model,
the robot was able to find many candidate vowels but was
not able to determine which of the candidates were more
vowel-like, i.e., which of the candidates were easier for
humans to recognize as vowels.

In the present study, we examine the hypothesis that
maternal imitation could play another important role in
vowel learning, that is, guiding the robot’s utterance to
become more vowel-like. The test task for a vocal robot
is learning how to articulate vowel-like sounds through
interaction with a caregiver who attempts to imitate the
utterances of the robot. Note that the caregiver cannot
regenerate the utterances as they are due to the difference
between their articulatory systems. In this setup, it is
conjectured that the imitated voice by the caregiver is per-
formed unconsciously to be more similar to one of his/her
own vowels. This behavior is referred to as ”unconscious
anchoring”. Maternal imitation and unconscious anchoring
are thought to provide two phenomena that support learning
of more vowel-like sounds: (1) given maternal imitation, the
robot can obtain references based upon which to modify
the mapping between the sound feature vectors of the
vowels generated by the caregiver and that by the robot, and
(2) furthermore, by unconscious anchoring, the references
would be gradually shifted to more vowel-like sounds.

Based on the same supposition, Miura et al. [10] re-
ported the possibility that the robot could acquire vowel-
like sounds through interaction with an imitative caregiver.
It was assumed that the designer cannot provide the vocal
robot with the utterances corresponding to the caregiver’s
natural vowels but that the designer can provide the vocal
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Fig. 1. Interaction model between the caregiver and the vocal robot

robot with a correct mapping between both acoustic feature
spaces. However, it is generally not trivial for the designer
to find such an accurate mapping for the case in which
the bodies of both agents are dissimilar. In this paper, we
examine another potential effect of unconscious anchoring,
in which we need only obtain a rough estimate of such
a mapping in order for the robot to acquire vowel-like
sounds through interaction with the caregiver who shows
unconscious anchoring.

In the remainder of this paper, we introduce the idea
of unconscious anchoring and a learning mechanism based
thereon. Through experimental trials of vowel learning with
a Japanese imitative caregiver, we show that the robot is able
to acquire more vowel-like utterances compared to robot
utterances without such a caregiver. Furthermore, we show
that the robot is able to learn vowel-like sounds even when
the robot is provided different mapping functions by which
to decide the correspondence between the human voice and
the robot voice.

II. A SSUMPTIONS AND BASIC CONCEPTS IN

UNCONSCIOUS ANCHORING

An interaction model between a caregiver and a robot is
shown in Fig. 1, in which a vocal robot interacts with a
caregiver through vocalization and hearing the voice of the
caregiver. In this scenario,

R: the robot tries to utter one of Japanese vowels, and
C: the caregiver listens to an utterance by the robot,

looks at the shape of the lips of the robot, and then
tries to imitate the voice of the robot.

Such imitation by a caregiver is expected to provide the
robot with information as to how the voice of the robot is
interpreted by the caregiver, which seems to reveal the most
important aspects with regard to achieving communication.

The task of the robot through such interaction is learn-
ing to find methods of articulation by which to generate
the sounds corresponding to the vowels of the caregiver.
The robot cannot generate exactly the same sound as the
caregiver (and vice versa) because their articulatory systems
are different. In other words, the regions of sounds that the
caregiver and the robot can generate are usually different
from each other or do not even overlap with each other.
Nevertheless, humans can map the sounds of the robot
to their own corresponding vowels [7]. In contrast, it is
usually not trivial for the designers to provide their robots

with an accurate mapping between these two regions of
sounds. Therefore, we assume that we can provide only
rough estimates of the mapping function.

Human utterances can be clustered in the space of the
static feature of the sound wave, namelyformant, in which
clusters correspond to vowels [11]. Therefore, it is feasible
to assume that we can provide the robot with the categories
of the desired vowels or that the robot will learn them
through the observation of usual human utterances.

Based on the above assumptions, when the robot listens
to an imitative utterance by the caregiver, the robot can
obtain information as to how its attempted voice differs
from the desired vowel category. Then, the robot can obtain
a rough information of the difference in its own sound
regions using the mapping function. The mapped difference
can be used for modifying its own ’vowel’ category. The
phenomenon of leading the robot’s utterance to be more
vowel-like would occur by virtue of the following implicit
assumption underlying the mutual imitation process. While
an individual attempts to imitate the robot’s voice, the
caregiver unconsciously uses his/her own voice and vowels
due to the sensorimotor constraints. In other words, the
caregiver’s imitative voice is slightly biased in the direction
toward his/her own vowel category. Consequently, since the
direction of modifying the categories of the robot are biased
toward those corresponding to the caregiver’s vowels, the
robot voices would gradually become more vowel-like, i.e.,
easier for humans to recognize as vowels.

The idea of unconscious anchoring would be generalized
to other modalities such as vision (and motion, i.e., gesture)
and hopefully guide a new methodology of providing a
robot with social skills through interaction. As the first
step, in this paper, we focus on the issue of robot vocal
acquisition through mutual imitative interaction with vision
and audition.

III. L EARNING METHOD

The robot learns how to articulate the vowels correspond-
ing to those of the caregiver through mutual imitation. In
the learning process, the ’vowel’ categories of the robot
defined in theformant spaceare updated through interaction
with an imitative caregiver. In this section, we introduce a
method to provide the robot with a rough estimation of
the mapping by which it can convert the information of
the correspondence onto the region of its own generable
sound. We then introduce the updating rule of the ’vowel’
categories of the robot.

A. Mapping functions between the regions of generable
sounds

Human vowels are well distinguished in the formant
space, a well known sound feature space for vowel clas-
sification [11]. Figure 2 shows sample distributions of five
Japanese vowels uttered by a Japanese male and a Japanese
female. As shown in Fig. 2, the categories of Japanese
vowels are distributed in the formant space as if they form
a pentagon.

Since we suppose that forming a pentagon in the for-
mant space is an important feature for vowel categories,
possible pentagons in the regions of generable sounds by
the robot are expected to be feasible starting positions for
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Fig. 2. Sample distribution of human vowels in the formant space

learning. Therefore, we provide the robot with a linear
transformation as a mapping function from the region of
generable sounds by the caregiver to that by the robot.
In other words, the sound of the caregiver’s vowelh/v/

(/v/ = /a/, /i/, /u/, /e/, or /o/) is converted to the
corresponding soundh’/v/ by a mapping functiong with
the parameters of a scaling coefficientα, a rotational matrix
R(θ) by the angleθ, and an offset vectors such as

h′/v/ = g(h/v/;α, θ, s) ≡ rc + αR(θ)(h/v/ − hc) + s (1)

where hc and r c indicate the centroids of the generable
regions by the caregiver and the robot, respectively.

B. Updating the ’vowel’ categories of the robot

The imitated voice of the robot utterance by the caregiver
is supposed to reveal the difference of the robot utterance
from the sound of the closest vowel category of the care-
giver. The differences can be converted to those by the robot
based on the mapping function and can be used to update
the ’vowel’ categories of the robot.

Suppose that the robot uttersr/v/
d which is one of the

current prototype vowels of/v/ and the caregiver generates
the imitated soundh. Let the prototype category of the usual
caregiver’s vowel/v/ beh/v/. The robot updatesr/v/

d based
on the difference betweenh andh/v/. These processes are
formalized as follows:

1) At the k-th step, the robot selects one of vowels
/v/ and utters it with the current prototype category
r/v/
d (k).

2) The caregiver generates the soundh(k) to imitate the
robot’s utterance.

3) The difference vector∆h = h/v/ - h(k) is converted to
the region of generable sounds by the robot with the
mapping functiong. The converted difference vector
is applied to modify the prototype categoryr/v/

d (k),
in other words,

r/v/
d (k + 1) = r/v/

d (k) + g(∆h) (2)

Figure 3 illustrates these processes schematically.
4) Again, the robot utters the voice with the new proto-

type categoryr/v/
d (k + 1).

IV. EXPERIMENT

In the experiments, we verify our hypotheses on the role
of maternal imitation in the acquisition process of more
vowel-like utterances by the robot: (1) the imitated voices
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Fig. 4. Four examples of mapping functions from the region of generable
sounds by the caregiver to that by the robot

by the caregiver converge on his/her own vowels owing to
”unconscious anchoring”, regardless of different mapping
functions, (2) the vowels that the robot acquired through
maternal imitation are more acceptable as Japanese vowels
than those acquired from fixed desired formant vectors.

We used four types of rough estimation in the exper-
iments, as shown in Fig. 4: (a) translation to match the
centroids, (b) translation plus scaling, (c) translation plus
offset, and (d) translation plus rotation.

First, we describe our vocal robot and the method by
which it forms utterances. Next, the experimental proce-
dures are explained, and the results of the imitated and
acquired vowels with statistical analysis are then given.

A. Vocal robot

Vocalization is commonly regarded as the result of a
modulation of a source of sound energy by a filter function
determined by the shape of the vocal tract. This is often
referred to as the source-filter theory of speech production
[12] and has been implemented in previous studies [7], [6].
To model the process of vowel convergence in mother-infant
interaction, we improved the vocal robot used in a previous
study [7] such that the sound source was replaced by an air
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Fig. 5. Articulatory system of the vocal robot

TABLE I

MOTOR COMMANDS TO FORM LIP SHAPES THAT RESEMBLE THOSE OF

A HUMAN IN VOCALIZING VOWELS

Motor output /a/ /i/ /u/ /e/ /o/
vertical direction 1.0 0.0 0.0 0.5 0.5

horizontal direction 1.0 1.0 0.0 1.0 0.0

compressor and an artificial vocal band. In addition, a lip
was added at the front end of the vocal tract, and the length
of the robot’s vocal tract changes from 170 [mm] (average
male vocal tract length) to 116 [mm].

Figure 5 shows the new vocal robot. The compressed air
is conveyed through a tube to the artificial vocal band to
generate the source sound of fundamental frequency, the
sound wave is then spread out through the vocal tract and
the lip, which is a silicon tube with a hollow end, thus
resembling a human lip. To modulate the sound wave, the
vocal tract and the lip were wired with four electric motors,
respectively, by which they could be deformed. The host
computer controls the motors through motor controllers (us-
biMC01, iXsResearch Corp.). The host computer receives
signals from a microphone and calculates their formants.

The vocal robot has six degrees of freedom, two of which
are used for opening/closing of the lips by four motors,
and four of which are used for deforming the vocal tract
by another set of motors. First, we show the utterance
capability of the robot. The motor commands that control
the shape of the vocal tract are quantized into five levels,
0 (free, no deformation), 0.25, 0.5 (medium), 0.75, and
1.0 (maximum deformation), and the motor commands that
control the lip shape are assigned to imitate the shape of
human lips. Table I and Fig. 6 show the motor commands
and lip shapes of the robot used to imitate the human lip
shape. Figure 7 shows the formant distribution of the robot
utterances in the formant space, where the horizontal and
vertical axes indicate the first and the second formants,
respectively.

Using the data in Fig. 7 as the list of the pairs of the
motor commands and the formant vectors, the robot can
generate the desired sound. From the list of the pairs, the
robot can find a number of candidate pairs for which the
formant vectors are sufficiently close to the desired vectors.
The robot then selects from the candidates a pair that has the
closest motor command to the previous motor command.

Lip shape /a/ Lip shape /i/ Lip shape /u/

Lip shape /e/ Lip shape /o/

Fig. 6. Lip shapes of the robot
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Fig. 7. Distribution of robot utterances in the formant space

B. Setup and procedure

The experiments are conducted under the condition that
one subject (the same caregiver throughout all of the
experiments) participated in the vowel acquisition process
by two methods using four mapping functions each. That
is, a total of eight experiments were conducted to verify
the hypotheses. Note that each experiment is iterated five
times for later statistical analysis. In the vowel acquisition
process with the proposed method of maternal imitation,
the caregiver tries to imitate the robot’s utterances such
that other person would judge the imitated voice as being
the same as that of the robot. During the alternation of
the uttering voice, the robot modifies the desired formant
vectors using the caregiver’s utterances as the information
of the correspondence of both utterances. For comparison,
the other process of vowel acquisition is performed by a
supervised learning method with fixed desired formant vec-
tors specified by the mapping function. The four mapping
functions are as follows:

translation: only translation by the difference between two
centroids:α=1.0, R(0), s=(0, 0) (See Fig. 4 (a)).

scaling: translation to match the centroids plus scaling:
α=0.24 (that coincides with the region of the
generable sounds of the robot),R(0), s=(0, 0) (See
Fig. 4 (b)).

offset: translation to match the centroids plus offset:
α=1.0, R(0), s=(-100, 200) (See Fig. 4 (c)).

rotation: translation to match the centroids plus rotation:
α=1.0, R(30), s=(0, 0) (See Fig. 4 (d)).

The mapping function of ’translation’ is regarded as one of
simple and feasible translation to match vowels in different
regions of formant space. The other mappings are example
varieties which contain some noise in such a feasible
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Fig. 8. Vowel categories in the formant space that the robot acquired by
the supervised learning and the maternal imitation with a mapping function
(translation)
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Fig. 9. Average vowel categories acquired by the supervised learning and
the maternal imitation

mapping. Note that the number of steps for the supervised
learning and the number of turn takings for the maternal
imitation are 20 for each vowel category.

C. Results

First, we present the robot’s vowels that were acquired
through the experiments. Figure 8 shows the vowel cate-
gories in the formant space that the robot acquired with
the supervised learning and the maternal imitation with a
mapping function (translation). In Fig. 8(a), the desired
formant vectors in the supervised learning and the final
desired formant vectors modified in the proposed learning
process with the maternal imitation are denoted by blue
symbols (+, * etc.) and red symbols, respectively. Hereafter,
blue and red indicate data obtained by supervised learning
and maternal imitation, respectively. In Fig. 8(b), the vowel
categories as formant vectors acquired by both methods are
indicated in the same colors as in Fig. 8(a). Figures 9(a)
and 9(b) show similar graphs to those of Figs. 8(a) and 8(b)
in the case of averaging the vowel categories among four
mapping functions. The differences between the supervised
learning and the learning with maternal imitation in Fig. 8
and Fig. 9 imply that the robot succeeded in modifying its
desired formant vectors.

We hypothesized that unconscious anchoring gradually
leads the caregiver’s utterance to his/her own vowels, and,
in order to verify this tendency, the changes in the difference
∆h in Fig. 3 (the distance indicating the error of the
mapping) at the beginning and at the end of the learning are
examined. This change is shown in Fig. 10. In the figure,
the vertical axis indicates the size of∆h, and the vertical
bars indicate the average of first three instances of learning
and the average of the last three instances of learning that
were acquired through five experiments using each mapping
function. In addition, the narrow bars indicate the standard
deviation of instances. A T-test indicated a highly significant
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Fig. 10. Difference between the imitated voices by the caregiver and
his/her corresponding usual vowels at the beginning and the end of the
interaction

difference in the average size of∆h between the first three
steps and the last three steps (p = 2.0 × 10−5). This
difference implies the tendency of the convergence of the
caregiver’s imitation hopefully to his/her own vowels. This
result seems to verify the first hypothesis.

Since it is difficult to show the more vowel-like method
between two methods (the maternal imitation and the super-
vised learning) in the formant space, we used a subjective
criterion to judge the more vowel-like method. We asked 15
subjects to compare the vowels acquired through maternal
imitation with vowels acquired by the supervised learning.
In this test, the robot continuously utters vowels acquired
through maternal imitation or with the supervised learning
with four different mapping functions in the normal order
of Japanese vowels, that is /a/,/i/,/u/,/e/,/o/. Subjects were
asked to compare the robot’s vowels four times (two sets
of the voices by the maternal imitation followed by that
of the supervised learning, and vise versa) in terms of
four mapping functions and to judge which vowels were
more vowel-like in terms of being recognizable as Japanese
vowels.

Figure 11 shows the results of a comparison of 15
subjects, where the percentage of subjects who reported
the vowels acquired by maternal imitation to be better with
each mapping function and the total percentage among all
four mapping functions are denoted by red bars, and the
percentage of subjects who reported the vowels acquired by
supervised learning to be better are denoted by blue bars.
We conducted tests to determine whether the percentage of
subjects who positively answer on the utterances acquired
by the maternal imitation is higher than the chance level
(50%). From statistical tests, we found that the subjects
tend to judge the utterances acquired by maternal imitation
to be more vowel-like than those acquired by supervised
learning for three mapping functions, namely translation
(p = 1.6×10−3), offset (p = 4.7×10−5), and rotation (p =
2.2 × 10−2). Although there was no significant difference
with the chance level in the case of a mapping function of
scaling (p = 2.8 × 10−1), the test on the total percentage
among four mapping functions indicated the tendency of
the utterances acquired by maternal imitation to be more
vowel-like (p = 1.1× 10−2). Based on the comparison, we
conclude that the robot was able to acquire better vowels
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Fig. 11. Probabilities of vowels to be selected as more natural

by maternal imitation or, in the worst case, vowels that
were recognizable by a human as being Japanese vowels,
regardless of the mapping functions.

V. D ISCUSSION AND CONCLUSION

In this paper, we proposed a vowel learning method with
an imitative caregiver based on the idea of unconscious
anchoring behavior of humans. In experiments, a vocal robot
succeeded in acquiring more vowel-like sounds through
iterative turn-taking with a caregiver who tried to imitate the
robot’s utterances. Even though the caregiver did not intend
to instruct the robot, intending rather to simply imitate the
robot’s sound, the human tendency of unconscious anchor-
ing worked to lead the robot’s utterances to be more vowel-
like. Since unconscious anchoring is expected to provide a
new paradigm by which to provide a robot with human-
like behaviors, in the future, we intend to quantitatively
investigate the extent to which such a tendency can be
expected and can be used for this purpose.

One of the most fundamental issues in imitation is to
find the mapping function from the observation of the
behaviors of others to one’s own behaviors. In the present
study, the mapping function is approximated by an affine
function in the formant space. The parameters used in
the experiments are limited, and we have not examined
other parameters. Estimates of the affine approximation
that are exceedingly incorrect do not seem work, but we
suppose that the parameters might work, unless the vowel
categories interfere with each other by the transformation
for modification. If the vowel categories interfere with each
other, then the desired formant vector jumped to the wrong
category. How can we guarantee no interfere is one of our
future issues.

In the present study, the parameters of the mapping func-
tion do not change during the maternal imitation process,
although these parameters are not exactly correct. Therefore,
the learning (modification) of these parameters simultane-
ously with modification of the desired vectors is a natural
extension of the current work, and we conjecture that this is
the process by which an infant, during the cooing process,
learns the vowel categories based on the experience of
listening to his/her mother’s utterances. Supporting evidence
is partially observed in developmental psychology [13],
[14]. However, real infants are exposed not simply by single
vowels, but rather by continuous voices with consonants,

that is, words, phrase, and sentences. Furthermore, mothers
do not simply respond by imitating their infants’ utterances.
In such an environment, the extension of the present re-
search is very challenging.

Since ”unconscious anchoring” is considered to be the
general concept of human behavior in imitation, the frame-
work of the present study is expected to be applied to other
modalities, such as vision (and motion, that is, gesturing).
To show this generality is another future issue. Since the
multi-modal senses of the human are said to be interfere
with each other (e.g., the McGurk effect [15]), another
possibility of the extension would concern the hybrid effects
of unconscious anchoring, not only on hearing, but also on
sight. Although the effects of these modalities were not well
separated in the preset study, investigations to separate these
effects is an important issue, and hopefully the requirements
of the body or the appearance of the robot will effectively
utilize multi-modal unconscious anchoring.
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