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Abstract. The existing reinforcement learning approaches have been
suffering from the curse of dimension problem when they are applied to
multiagent dynamic environments. One of the typical examples is a case
of RoboCup competitions since other agents and their behaviors easily
cause state and action space explosion. This paper presents a method
of modular learning in a multiagent environment by which the learning
agent can acquire cooperative behaviors with its team mates and com-
petitive ones against its opponents. The key ideas to resolve the issue
are as follows. First, a two-layer hierarchical system with multi learning
modules is adopted to reduce the size of the sensor and action spaces.
The state space of the top layer consists of the state values from the lower
level, and the macro actions are used to reduce the size of the physical
action space. Second, the state of the other to what extent it is close to
its own goal is estimated by observation and used as a state value in the
top layer state space to realize the cooperative/competitive behaviors.
The method is applied to 4 (defence team) on 5 (offence team) game
task, and the learning agent successfully acquired the teamwork plays
(pass and shoot) within much shorter learning time (30 times quicker
than the earlier work).

1 Introduction

Recently, there have been increasing number of studies on cooperative/competitive
behavior acquisition in a multiagent environment by using reinforcement learn-
ing methods [2, 3, 5–7]. In such an environment, the state and action spaces for
the learning can be easily exploded since not only objects but also other agents
should be involved in the state and action spaces, and therefore the sensor and
actuator level descriptions may cause information explosion that disables the
learning methods to be applied within practical learning time. Shivaram et al.
[5] showed that the learning rate can be accelerated by sharing the learned infor-
mation in the 4 on 5 game task. However, they need still long learning time since
they directly use the sensory information as state value to decide the situation.
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Stefan et al. [2] achieved the cooperative behavior learning task between two
robots in real time by introducing the macro action that is abstracted action
code predefined by the designer. However, only the macro actions do not seem
sufficient to accelerate the learning time in a case that more agents are included
in the environment. Therefore, the sensory information should be also abstracted
to reduce the size of the state space.

Jacobs and Jordan [4] proposed a learning system called “Mixture of Experts”
that outputs the summation of the weighted outputs of the multiple learning
modules. The idea that the weight reflects the fitness of each module to the
current situation is generally useful to build an efficient system. Doya et al.
[1] proposed a similar system called “MOSAIC” that spatio-temporally divides
the nonlinear and unsteady environment into linear and steady segments, and
selects the module corresponding to one of these segments that predicts the
state transition most correctly. However, they showed a simple example and
its scalability to more complicated tasks such as multiagent interactions in a
dynamic environment has not been made clear.

The prediction of other’s behavior is important to realize the cooperative
(competitive) behaviors with (against) others in general. Takahashi et al. [8]
proposed a method to infer the other’s intention by observation based on the
idea that the increase of the state value (the larger the state value, the closer to
the goal) means the other intends to achieve the corresponding goal regardless of
the differences of viewpoint and/or action to achieve the goal. If this prediction
capability is incorporated into the learning system, the learner can efficiently
acquire the desired behaviors.

This paper presents a method of modular learning in a multiagent envi-
ronment by which the learning agent can acquire cooperative behaviors with its
team mates and competitive ones against its opponents. The key ideas to resolve
the issue are as follows. First, a two-layer hierarchical system with multi learning
modules is adopted to reduce the size of the sensor and action spaces. The state
space of the top layer consists of the state values from the lower level, and the
macro actions are used to reduce the size of the physical action space. Second,
the state of the other to what extent it is close to its own goal is estimated by
observation and used as a state value in the top layer state space to realize the
cooperative/competitive behaviors. The method is applied to 4 (defence team)
on 5 (offence team) game task, and the learning agent successfully acquired the
teamwork plays (pass and shoot) within much shorter learning time (30 times
quicker than the earlier work).

2 Multi module Learning System with Other’s State
Inference Modules

2.1 Architecture

Fig.1 shows a basic architecture of the proposed system, i.e., a two-layered multi-
module reinforcement learning system. The bottom layer consists of two kinds of
modules: action modules and other’s state inference ones. The top layer consists
of a single gate module that learns which action module should be selected
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Fig. 1. A multi-module learning system

according to the current state that consists of state values sent from the modules
at the bottom layer. More correctly, it selects one of the action modules which
has the best estimation of a state transition sequence by activating a gate signal
corresponding to a module while deactivating the gate signals of other modules;
the selected module then sends action commands based on its policy.

2.2 Action module

An action module has a forward model (predictor) which represents the state
transition model and a behavior learner (action planner) which estimates the
state-action value function based on the forward model in a reinforcement learn-
ing manner.

(a) Predictor: Each learning module has its own state transition model. This
model estimates the state transition probability P̂a

ss′ for the triplet of state
s, action a, and next state s′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (1)

Each module has a reward model R̂a
ss′ , too:

R̂a
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2)

We simply store all experiences (sequences of state-action-next state and
reward) to estimate these models.

(b) Planner: Now we have the estimated state transition probabilities P̂a
ss′ and

the expected rewards R̂a
ss′ , then, an approximated state-action value func-

tion Q(s, a) for a state action pair s and a is given by

Q(s, a) =
∑
s′

P̂a
ss′

[
R̂a

ss′ + γ max
a′

Q(s′, a′)
]

, (3)

where γ is a discount rate.
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The predictor and planner in each action module have been already acquired
before the learning of the gate module here.

2.3 Other’s state inference module

The role of the other’s state inference module is to estimate the state value that
indicate the degree of achievement of the other’s task by observation, and to
send this value to the state space of the gate module at the top layer. In order
to estimate the degree of achievement, the following procedure is taken.

1. The learner acquires the various kinds of behaviors that the other agent may
take, and each behavior corresponds to each action module, and each other’s
state inference one.

2. The learner estimate the sensory information observed by the other through
the 3-D reconstruction of its own sensory information.

3. Based on the estimated sensory information of the other, each other’s state
inference module estimates the other’s state value by assigning the state
value of the corresponding action module of its own.

3 Task and Assumptions

The game consists of the offence team (five players and one of them can be the
passer) and the defence team (four players attempt to intercept the ball) The
offence player nearest to the ball becomes a passer who passes the ball to one
of its teammates (receivers) or shoot the ball to the goal if possible while the
opposing team tries to intercept it (see Fig. 2).

Fig. 2. A passer and the defence for-
mation

Fig. 3. A real robot

Only the passer learns its behavior while the receivers and the defence team
members take the fixed control policies. The receiver becomes the passer after
receiving the ball and the passer becomes the receiver after passing the ball.
After one episode, the learned information is circulated among team members
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through communication channel but no communication during one episode. The
action and inference modules are given a priori.

The offence (defence) team color is magenta (cyan), and the goal color is blue
(yellow) in the following figures.

3.1 Offence team

The passer who is the nearest to the ball passes the ball to one of four receivers
or dribble-shoots the ball to the goal. After its passing, the passer shows a pass-
and-go behavior that is a motion to the goal during the fixed period of time.
The receivers face to the ball and move to the positions so that they can form a
rectangle by taking the distance to the nearest teammates (the passer or other
receivers) (see Fig. 2). The initial positions of the team members are randomly
arranged inside their territory.

3.2 Defence team

The defence team member who is nearest to the passer attempts to intercept
the ball, and each of other members attempts to “block” the nearest receiver.
“Block” means to move to the position near the offence team member and be-
tween the offence and its own goal (see Fig. 2). The offence team member at-
tempts to catch the ball if it is approaching. In order to avoid the disadvantage
of the offence team, the defence team members are not allowed inside the penalty
area during the fixed period of time. The initial positions of the team members
are randomly arranged inside their territory but outside the center circle.

3.3 Robots and the environment

Fig. 3 shows a mobile robot we have designed and built. Fig. 4 shows the viewer
of our simulator for our robots and the environment. The robot has an omni-
directional camera system. A simple color image processing is applied to detect
the ball, the interceptor, and the receivers on the image in real-time (every
33ms.) The left of Fig. 4 shows a situation the agent can encounter while the
right images show the simulated ones of the normal and omni vision systems.
The mobile platform is an omni-directional vehicle (any translation and rotation
on the plane.)

We suppose that the omni directional vision system provides the robot with
3-D construction of the scene. This assumption is needed for the other’s state
inference module since it is needed to estimate the sensory information observed
by other robots.

4 Structure of the state and action spaces

The passer is only one learner, and the state and action spaces for the lower
modules and the gate one are constructed as follows. The action modules are
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Fig. 4. Viewer of simulator

four passing ones for four individual receivers, and one dribble-shoot module. The
other’s state inference modules are the ones to estimate the degree of achievement
of ball receiving for four individual receivers, that is how easily the receiver can
receive the ball from the passer. These modules are give in advance before the
learning of the gate module.

The action spaces of the lower modules adopt the macro actions that the
designer specifies in advance to reduce the size of the exploration space without
searching at the physical motor level.

The state space S for the gate module consists of the following state values
from the lower modules:

– four state values of passing action modules corresponding to four receivers,
– one state value of dribble-shoot action module, and
– four state values of receiver’s state inference modules corresponding to four

receivers.

In order to reduce the size of the whole state space, these values are binarized,
therefore its size is 24 x 2 x 24=512.

The rewards are given as follows:

– 10 when the ball is shot into the goal (one episode is over),
– -1 when the ball is intercepted (one episode is over),
– 0.1 when the ball is successfully passed,
– 0.3 when the ball is dribbled.

When the ball is out of the field or the pre-specified time period elapsed, the
game is called “draw” and one episode is over.

4.1 State space for the passing module

The state space of the passing module S is defined on the omni directional
camera image as follows (see Fig. 5(a)):

– the smallest angle among angles between the receiver and one the defence
players who is nearer to the passer than the receiver (θ1), and
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Fig. 5. State variable ((a)), examples of state values ((b)), and state value map of the
pass module ((c))

– the angle between the receiver and one of the defence players who is nearest
to the passer (θ2).

The both angles are quantized into ten levels including an invisible case,
therefore the total number of states is 100. An example of the state values of
four receivers is shown in Fig. 5(b) where the passer is the robot 3 (hereafter,
r3 in short), and the color bars near four robots (r0, r1, r2, and r4) indicate
the state values of the pass modules for four receivers, respectively. The higher
the bar is, the higher the state value is. Since the pass courses for r1 and r2
are not intercepted by the defence players, their state values are high while the
state values for r0 and r4 are low since their pass courses are intercepted by the
defence players.

The state value map is shown in Fig. 5(c) that indicates the smaller the angle
between the receiver and the defence player is, the lower the state value is. The
black region (one region is separated in the figure) is inexperience area, and the
state value sent to the top layer is binarized, that is the value smaller than 1.0
is 0.0.

4.2 State space for the dribble-shoot module

The state space of the dribble-shoot module S is defined on the omni directional
camera image as follows (see Fig. 6(a)):

– the angle between the opponent goal and one of the defence players who is
nearest to the passer (θ1),

– the angle between the ball and one of the defence players who is nearest to
the passer (θ2),

– the distance to the nearest defence player (r), and
– the angle between the both edges of the opponent goal (θ3) that represents

the distance to the goal.
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Fig. 6. State variables ((a)) and state values ((b)) for the dribble and shoot module

These state values are quantized into eight, five, eight, and seven, respectively.
The total number of states is 8 x 8 x 5 x 7 = 2240.

The state value map of the dribble-shoot module in terms of θ1 and r with
fixed values of θ2 and θ3 is shown in Fig. 6(b) that indicates the nearer the
defence player is, the smaller the state value is. The state value sent to the top
layer is binarized, that is the value smaller than 1.0 is 0.0.

Fig. 7. Two examples of the state values: high (left) and low (right)

Two examples of the state values of the passer expected to take a role of a
shooter is shown in Fig. 4.2 where the color bars near the passer indicate the
state values of the dribble-shoot modules. The higher the bar is, the higher the
state value is. Since the passer (r1) is near the goal and no defence players around
in Fig. 4.2 (left), the state value is high while the state value of the passer (r3)
in Fig. 4.2 (right) is low since it is located far from the goal and the defence
players are around it.

4.3 State space for the receiver’s state inference module

The passer infers each receiver’s state that indicates how easily the receiver can
shoot the passed ball to the goal by reconstructing its TV camera view of the
scene from the passer’s omnidirectional view. Since we suppose that the passer
has already learned the shooting behavior, the passer can estimate the receiver’s
state value by assigning its own experienced state of the shooting behavior.

The state space S for the receiver’s state inference module consists of:
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– The distance to the nearest defence player (r)
– The angle between the both side edged of the opponent goal (θ1) that rep-

resents the distance to the goal (see Fig. (8(a)).).

The both are quantized into five and seven levels, therefore the number of
states are 5 x 7 = 35.
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Fig. 8. State variables ((a)), examples of state values ((b)), and state value map ((c))
of the receiver module

An examples of the state values of the receiver’s state inference modules is
shown in Fig. 8(b) where the color bars near the four receivers indicate their state
values. The higher the bar is, the higher the state value is. Since the receiver
(r0) is near the goal and no defence players around, the state value is high while
the state values of other receivers (r1, r2, and r4) are low since it is located far
from the goal and/or the defence players are around it.

The state value map of the receiver’s state inference module in terms of θ1

and r is shown in Fig. 8(c) that indicates the nearer (further) the defence player
is and the further (nearer) the goal is, the smaller (larger) the state value is. The
black region is inexperienced area, and the state value sent to the top layer is
binarized, that is the value smaller than 1.0 is 0.0.

5 Experimental Results

The success rate is shown in Fig. 9(a) where the action selection is 80% greedy
and 20% random to cope with new situations. Around the 900th trial, the learn-
ing seems to have converged at 30% success, 70% failure, and 10% draw. Com-
pared to the results of [5] that has around 30% success rate with 30,000 trials, the
learning time is drastically improved (30 times quicker). Fig. 9(b) indicates the
number of passes where it decreases after the 350 trials that means the number
of useless passes decreased.

In cases of the success, failure, and draw rates when 100% greedy and 100%
random are 55%, 35%, 10%, and 2%, 97%, 1%, respectively. The reason why
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Fig. 9. Success rate and the number of passes

the success rate in case of 100% greedy is better than in case of 80% greedy
seems that the control policies of the receivers and the defence players are fixed,
therefore not so new situations happened.

An example of acquired behavior is shown in Fig. 10 where a sequence of
twelve top views indicates a successful pass and shoot scene.

6 Discussion

We have used the state values instead of the physical sensor values and macro
actions instead of the physical motor commands, and adopted the receiver’s state
inference modules that infer how easy for each receiver to receive the ball in order
to accelerate the learning. As a result, we have much improved the learning time
(30 times quicker!) compared to the result of the existing method [5] that has
32% success with communication and 23% without communication at around
the 30,000th trial when the learning seems to have converged.

Although we have not used the communication between agents during one
episode, the receiver’s state inference modules seem to take the similar role.
Then, we performed the learning without these modules. Fig. 11 shows the suc-
cess rate, and we can see that the converged success rate is around 21% that is
close to 23% of the success rate of the result of the existing method [5]. We may
conclude that the state and action space abstraction (the use of state values and
macro actions) contributed to the reduction of the learning time while the use
of the receiver’s state inference modules contributed to the improvement of the
teamwork performance. The real robot implementation is our future work.

References

1. Kenji Doya, Kazuyuki Samejima, Ken ichi Katagiri, and Mitsuo Kawato. Multi-
ple model-based reinforcement learning. Technical report, Kawato Dynamic Brain
Project Technical Report, KDB-TR-08, Japan Science and Technology Corporation,
June 2000.



Title Suppressed Due to Excessive Length 11

Fig. 10. An example of the acquired behavior
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